
COS 302: Introduction to Artificial Intelligence

Homework #7 Fall 2003
Machine learning Due: Tuesday, January 13

Part I: Written Exercises

Turn these in on or before the due date in room 001A Computer Science. Approximate point values
are given in parentheses. Be sure to show your work and justify all of your answers.

1. (32) Consider the following dataset consisting of five training examples followed by three test
examples:

x1 x2 x3 y

training
− + + −
+ + + +
− + − +
− − + −
+ + − +

test
+ − − ?
− − − ?
+ − + ?

There are three attributes (or features or dimensions),x1, x2 andx3, taking the values+ and−.
The label (or class) is given in the last column denotedy; it also takes the two values+ and−.

Simulate each of the following four learning algorithms on this dataset. In each case, show the
final hypothesis that is induced, and show how it was computed. Also, say what its prediction would
be on the three test examples.

For parts c and d, see the Chapter 20 errata below.

a. Thedecision tree algorithmdiscussed in class and R&N. For this algorithm, use the informa-
tion gain (entropy) impurity measure as a criterion for choosing an attribute to split on. Grow
your tree until all nodes are pure, but do not attempt to prune the tree.

b. AdaBoost. For this algorithm, you should interpret label values of+ and− as the real num-
bers+1 and−1. Use decision stumps as weak hypotheses, and assume that the weak learner
always computes the decision stump with minimum error on the training set weighted byDt.
(Recall that a decision stump is a one-level decision tree; see R&N p. 666.)

c. Support vector machines. For this algorithm, you should interpret both label and attribute val-
ues of+ and− as the real numbers+1 and−1. Also, you can use the additional information
that the first three examples are support vectors, but the others are not, so thatα4 andα5 are
both zero in R&N Eq. (20.17). This means that you can maximize this equation overα1, α2
andα3 using calculus. (Note that if any of these variables turn out to be negative, there’s a
problem.) When you have found a solution vectorw, check it by showing thatyi(w ·xi) ≥ 1,
and that equality holds for the support vectors, i.e., the first three examples. (The notation
here is as in class and R&N.)



d. Neural networks. For this algorithm, use a single-layer neural net consisting of just a single
perceptron at the output, no hidden layers, and the three features at the input level. Attribute
values of+ and− should be interpreted as the real numbers+1 and−1, while label values
of + and− should be interpreted as1 and0. You can disregard the “bias weight” (denoted
W0 in R&N), i.e., assume it is fixed to be zero. Assume that the neural net is trained for a
single epoch that runs through the training data once in the order given. Use a learning rate
of α = 0.1, and start with all weights equal to zero.

2. (15) In class, we looked at the following dataset:

x1 x2 x3 x4 x5 x6 x7 x8 y

1 1 0 0 0 1 0 1 1
1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0
0 1 0 0 1 0 0 0 0
1 0 0 0 0 1 0 1 0
0 1 1 0 1 1 0 1 1
1 1 0 1 0 1 0 1 1
0 1 0 1 0 1 0 0 1
0 0 0 0 0 0 1 1 0

It was noticed that the labely is 1 if and only if x2 andx6 are both equal to1. Since attributes and
labels are{0, 1}-valued, we can write this rule succinctly asy = x2x6. In general, such a product of
any number of attributes is called amonomial. (This includes the “empty” monomial, which, being
a product of no variables, is always equal to1.)

Throughout this problem, you can assume that the attributes and labels are all{0, 1}-valued.

a. Describe a simple algorithm that, given a dataset, will efficiently (in polynomial time) find a
monomial consistent with it, assuming that one exists.

b. What is the total number of monomials that can be defined onn attributes?

c. Use the bound derived in class (or the results in R&N) to compute an upper bound on the
generalization error of the monomial that was found to be consistent with the dataset above.
Derive a bound that holds with 95% confidence (so thatδ = 0.05).

d. In the example above wheren = 8, how many examples would be needed to be sure the
generalization error of a consistent monomial is at most 10% with 95% confidence?

Part II: Programming

The programming part of this assignment is described at:
http://www.cs.princeton.edu/courses/cs302/assignments/learning/index.html

Chapter 20 Errata

There are a couple of errors in Chapter 20 of R&N.
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First of all, the equation second from the bottom on page 741 that now reads:

= Err × ∂

∂Wj
g

y − n∑
j=0

Wjxj


should instead read:

= Err × ∂

∂Wj

y − g
 n∑
j=0

Wjxj

 .
Secondly, the paragraph describing SVM’s at the very bottom of page 749 continuing at the

top of 751 is not quite correct, but some explanation is required to describe what the problem is.
In class, we implicitly required the hyperplane sought by the SVM algorithm to pass through the
origin. This resulted in a hypothesis of the form

sign(w · x).

In other treatments of SVM’s, however, the hyperplane is oftennot required to pass through the
origin. Thus, the computed hypothesis has the form

sign(w · x + b),

so that the hyperplane is defined both by the vectorw and the scalarb.
The treatment in R&N is not quite correct for either of these cases. For the through-the-origin

case, their treatment would be correct if the constraint
∑
i αiyi = 0 were omitted. With the omission

of this constraint, their treatment is the same as was presented in class. For the not-through-the-
origin case, the treatment in R&N would be correct if Eq. (20.18) were replaced by

h(x) = sign

(∑
i

αiyi(x · xi) + b

)
,

for someb that can be written in terms of the other variables (details omitted). For this class (in-
cluding Problem 1c above), we will only consider the through-the-origin case.
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