7. Theory of Computation

Introduction to Computer Science - Robert Sedgewick and Kevin Wayne + http://www.cs.Princeton. EDU/IntroCS

Introduction to Theoretical CS

Two fundamental questions.
. What can a computer do?
. What can a computer do with limited resources?
General Qpproach. Pentium IV running Linux kernel 2.4.22
. Don't talk about specific machines or problems.
. Consider minimal abstract machines.
. Consider general classes of problems.

Why Learn Theory

In theory ...
. Deeper understanding of what is a computer and computing.
. Foundation of all modern computers.
. Pure science.
. Philosophical implications.

In practice. ..
. Web search: theory of pattern matching.
. Sequential circuits: theory of finite state automata.
. Compilers: theory of context free grammars.
. Cryptography: theory of computational complexity.
. Data compression: theory of information.

7.1 Regular Expressions and DFAs

a* | (a*ba*ba*ba*)*

Introduction to Computer Science - Robert Sedgewick and Kevin Wayne - http://www.cs.Princeton.EDU/IntroCS

Pattern Matching Applications

Test if a string matches some pattern.

Scan for virus signatures.

Process natural language.

Search for information using Google.

Search for markers in human genome.

Access information in digital libraries.

Retrieve information from Lexis/Nexis.
Search-and-replace in a word processors.

Filter text (spam, NetNanny, Carnivore, malware).
Validate data-entry fields (dates, email, URL, credit card).

Parse text files.

Compile a Java program.
Crawl and index the Web.
Read in data stored in TOY input file format.

Automatically create Java documentation from Javadoc comments.

Regular Expressions: Basic Operations

Regular expression.

. Notation to specify a set of strings.

Operation Regular Expression Yes No
Concatenation aabaab aabaab every other string
. aa .
Logical Or aa | baab every other string
baab
aa €
Replication ab*a aba ab
abbba ababa
aaaab 5
a(al|b)aab every other string
abaab
Grouping 2 .
(ab) *a aba aa
ababa abbba

Regular Expressions: Examples

Regular expression examples.

Notation is surprisingly expressive.

Regular Expression Yes No
€
bbb °
a* | (a*ba*ba*ba*) bb
. s aaa b
a aaaa
multiple of three b's PR
baabbbaa
bbbaababbaa
a
a | a(alb)*a aba ¢
. . ab
begins and ends with a aa ba
abbaabba
(alb)* abba (a|b)* SAeE) E
. . bbabbabb abb
contains the substringabba | _ .~ . BT

Using Regular Expressions

Regular expressions are a standard programmer's tool.
. Built in to Java, Perl, Unix, Python,

. Additional operations typically added for convenience.

. Ex: [a-e]+is shorthand for (albicldle) (alblcldle)*.

Operation Regular Expression Yes No
. bloodroot cookbook
Any single character ..00..00.
spoonfood choochoo
o (be) +d abcde ade
e e a(bc e
e or mor abcbcde bcde
decade
Character classes [a—e]l+ Upper45
accede

Regular Expressions in Java

Ex: pattern match.
. Is text in the set described by the pattern?

public class RE {
public static void main(String[] args) {
String pattern = args[0];
String text = args[1];
System.out.println (text.matches (pattern)) ;

@ need help solving crosswords?

% java RE "..00.00." bloodroot

EETS @ legal Java identifier

% java RE "[$_A-Za-z][$_A-Za-z0-9]*" identl23

(a0 o 'e9al email address (simplified)

% java RE "[a-z]+Q([a-z]+\.)+(edu|com)" rs@cs.princeton.edu
true

need quotes to "escape" the shell

Solving the Pattern Match Problem

Regular expressions are a concise way to describe patterns.
. How would we implement string.matches ?
. Hardware: build a deterministic finite state automaton (DFA).
. Software: simulate a DFA.

DFA: simple machine that solves the pattern match problem.
. Different machine for each pattern.
. Accepts or rejects string specified on input tape.
. Focus on true or false questions for simplicity.

@ ACCEPT
@RESET

\ 0*10*)*

(0*10

Deterministic Finite State Automaton (DFA)

Simple machine with N states.
. Begin in start state.
- Read first input symbol.
. Move to new state, depending on current state and input symbol.
. Repeat until last input symbol read.
. Acceptor reject string depending on label of last state.

DFA

Input |b|bfala|b[b|a|B]D]

L

Theory of DFAs and REs

RE. Concise way to describe a set of strings.
DFA. Machine to recognize whether a given string is in a given set.

Duality: for any DFA, there exists a regular expression to describe
the same set of strings; for any regular expression, there exists a DFA
that recognizes the same seft.

(a*ba*ba*ba*) * a*

multiple of 3 b's multiple of 3 b's

Practical consequence of duality proof: to match regular expression
patterns, (i) build DFA and (ii) simulate DFA on input string.

Implementing a Pattern Matcher

Problem: given a regular expression, create program that tests
whether given input is in set of strings described.

Step 1: build the DFA.
. A compiler!
. See COS 226 or COS 320.

Step 2: simulate it with given input.
. Easy.

State state = start;

while (!'CharStdIn.isEmpty()) {
char c¢ = CharStdIn.readChar())
state = state.next(c);

}
System.out.println(state.accept()) ;

Application: Email Harvester

Harvest email addresses from web for spam campaign.
. User enters name of file and program prints email addresses.

import java.util.regex.Pattern;
import java.util.regex.Matcher;
public class EmailHarvester {
public static void main(String[] args) {
In in = new In(args[0]);
String input = in.readAll() ;
String regexp = "[a-z]+@([a-z]+\\.)+(edu|com|net|tv)";
Pattern pattern = Pattern.compile (regexp) ;
Matcher matcher = pattern.matcher (input) ;
while (matcher.find())
System.out.println (matcher.group()) ;

simple email validator

% java EmailHarvester http://www.cs.princeton.edu/courses/csl26/precepts.html
pcalamia@cs.princeton.edu *

dgabai@cs.princeton.edu . .
sgaw@cs . princeton.edu OK to enter URL instead of file!

wayne@cs.princeton.edu

Application: Parsing a Data File

Parsing input files: TOY, Internet movie database, NCBI genome file.

LOCUS AC146846 128142 bp DNA linear HTG 13-NOV-2003
DEFINITION Ornithorhynchus anatinus clone CLM1-393H9,
ACCESSION AC146846

VERSION AC146846.2 GI:38304214

KEYWORDS HTG; HTGS_PHASE2; HTGS_DRAFT.

SOURCE Ornithorhynchus anatinus (platypus)

ORIGIN

1 tg tgc tg cggr gtacggtgtt agggagccac

61 g t ttg /7 a
121 gtttgtgatg ta t

128i(‘):‘l aatgtacagc tg

/7

String regexp = "[]1*[0-9]+([actg]*).*";

Pattern pattern = Pattern.compile (regexp) ;
In in = new In(filename) ;
String line;
while ((line = in.readLine()) !'= null) {
Matcher matcher = pattern.matcher (line) ;
if (matcher.find()) { @ just the RE part in parentheses
String s = matcher.group(l) .replaceAll (" ", "");
// do something with s 1t 1t
} replace this RE with this string

Fundamental Questions

Which languages CANNOT be described by any RE?
. Set of all bit strings with equal number of Os and 1s.
. Set of all decimal strings that represent prime numbers.
« Many more. . ..

How can we extend REs to describe richer sets of strings?
. Context free grammar. € see COS 320

. EX: JGVG language. 4@ http://javasun.com/docs/books/jls/second_edition/html/syntax.doc.html
How can we make simple machines more powerful?

Are there any limits on what kinds of problems machines can solve?

Summary

Programmer.
. Regular expressions are a powerful pattern matching tool.
. Implement regular expressions with finite state machines.

Theoretician.
. Regular expression is a compact description of a set of strings.

. DFA is an abstract machine that solves pattern match problem for
regular expressions.

. DFAs and regular expressions have limitations.

You. Practical application of core CS principles.

7.2: Turing Machines

Challenge: Design simplest machine that is
"as powerful" as conventional computers.

Alan Turing (1912-1954)

Introduction to Computer Science - Robert Sedgewick and Kevin Wayne + http://www.cs.Princeton.EDU/IntroCS

Turing Machine: Components

Alan Turing sought the most primitive model of a computing device.

Tape.
. Stores input, output, and intermediate results.
. One arbitrarily long strip, divided into cells.

. Finite alphabet of symbols.

tape head

Tape head.
. Points to one cell of tape.
. Reads a symbol from active cell.
. Writes a symbol to active cell.
. Moves left or right one cell at a time.

Turing Machine: Fetch, Execute

States.
. Finite number of possible machine configurations.
. Determines what machine does and which way tape head moves.

State transition diagram.

. Ex. if instate 2 and input symbol is 1 then: overwrite the 1 with x,
move to state O, move tape head to left.

2
(&)
®

Before |...|#|#|x|x|x|1|1|0|#|#|...|

Turing Machine: Fetch, Execute

States.
. Finite number of possible machine configurations.
. Determines what machine does and which way tape head moves.

State transition diagram.

. Ex. if instate 2 and input symbol is 1 then: overwrite the 1 with x,
move to state O, move tape head to left.

®

e Rnnnnn - nonone

Turing Machine: Initialization and Termination

Initialization.
. Set input on some portion of tape.
. Set tape head.

. Set initial state.

CTee e oA A [a [A [+ 1]

Termination.
. Stop if enfer yes, no, or halt state.
. Infinite loop possible.

o Tela]=[=x[=[=[=[~EM*]]

Example: Equal Number of O's and 1's

find 1

reject

find left end

find O

[J#]#]ofoa]a]a]o]s]#].]

Turing Machine Summary

Goal: simplest machine that is "as powerful" as conventional computers.

Surprising Fact 1. Such machines are very simple.
Surprising Fact 2. Some problems cannot be solved by ANY computer.
T

next lecture
Consequences.

. Precursor to general purpose programmable machines.

. Exposes fundamental limitations of all computers.

. Enables us to study the physics and universality of computation.
- No need to seek more powerful machines!

