
Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • http://www.cs.Princeton.EDU/IntroCS

7: Theory of Computation

2

Introduction to Theoretical CS

Two fundamental questions.
� What can a computer do?
� What can a computer do with limited resources?

General approach.
� Don't talk about specific machines or problems.
� Consider minimal abstract machines.
� Consider general classes of problems.

Pentium IV running Linux kernel 2.4.22

3

Why Learn Theory

In theory . . .
� Deeper understanding of what is a computer and computing.
� Foundation of all modern computers.
� Pure science.
� Philosophical implications.

In practice . . .
� Web search: theory of pattern matching.
� Sequential circuits: theory of finite state automata.
� Compilers: theory of context free grammars.
� Cryptography: theory of computational complexity.
� Data compression: theory of information.

Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • http://www.cs.Princeton.EDU/IntroCS

7.1: Regular Expressions and DFAs

a* | (a*ba*ba*ba*)*

Y NN
b

1

b

a aa

20

b

5

Pattern Matching Applications

Test if a string matches some pattern.
� Scan for virus signatures.
� Process natural language.
� Search for information using Google.
� Search for markers in human genome.
� Access information in digital libraries.
� Retrieve information from Lexis/Nexis.
� Search-and-replace in a word processors.
� Filter text (spam, NetNanny, Carnivore, malware).
� Validate data-entry fields (dates, email, URL, credit card).

Parse text files.
� Compile a Java program.
� Crawl and index the Web.
� Read in data stored in TOY input file format.
� Automatically create Java documentation from Javadoc comments.

6

Regular Expressions: Basic Operations

Regular expression.
� Notation to specify a set of strings.

every other string
aaaab
abaaba(a|b)aab

Grouping

(ab)*a

ab*a

aa | baab

aabaab
Regular Expression

�

aa
abbba

a
aba
ababa

�

ab
ababa

aa
aba
abbba

Replication

Logical Or

Concatenation

Operation

every other string
aa
baab

every other stringaabaab
NoYes

7

Regular Expressions: Examples

Regular expression examples.
� Notation is surprisingly expressive.

�

abb
bbaaba

abba
bbabbabb
abbaabba

(a|b)* abba (a|b)*
contains the substring abba

a | a(a|b)*a
begins and ends with a

a* | (a*ba*ba*ba*)
multiple of three b’s

Regular Expression

�

ab
ba

a
aba
aa
abbaabba

b
bb
abbaaaa
baabbbaa

�

bbb
aaa
abbbaaa
bbbaababbaa

NoYes

8

Using Regular Expressions

Regular expressions are a standard programmer's tool.
� Built in to Java, Perl, Unix, Python,
� Additional operations typically added for convenience.
� Ex: [a-e]+ is shorthand for (a|b|c|d|e)(a|b|c|d|e)*.

ade
bcde

abcde
abcbcdea(bc)+deOne or more

cookbook
choochoo

bloodroot
spoonfood..oo..oo.Any single character

Upper45decade
accede[a-e]+Character classes

Regular ExpressionOperation NoYes

9

Regular Expressions in Java

Ex: pattern match.
� Is text in the set described by the pattern?

public class RE {
public static void main(String[] args) {

String pattern = args[0];
String text = args[1];
System.out.println(text.matches(pattern));

}
}

% java RE "..oo.oo." bloodroot
true

% java RE "[$_A-Za-z][$_A-Za-z0-9]*" ident123
true

% java RE "[a-z]+@([a-z]+\.)+(edu|com)" rs@cs.princeton.edu
true

legal Java identifier

legal email address (simplified)

need quotes to "escape" the shell

need help solving crosswords?

10

Solving the Pattern Match Problem

Regular expressions are a concise way to describe patterns.
� How would we implement String.matches ?
� Hardware: build a deterministic finite state automaton (DFA).
� Software: simulate a DFA.

DFA: simple machine that solves the pattern match problem.
� Different machine for each pattern.
� Accepts or rejects string specified on input tape.
� Focus on true or false questions for simplicity.

(0*10 | 0
10)*

11

Deterministic Finite State Automaton (DFA)

Simple machine with N states.
� Begin in start state.
� Read first input symbol.
� Move to new state, depending on current state and input symbol.
� Repeat until last input symbol read.
� Accept or reject string depending on label of last state.

Y NN
b

1

b

a aa

20

b

b b a a b b a b bb b a a b b a b bInput

DFA

12

Theory of DFAs and REs

RE. Concise way to describe a set of strings.
DFA. Machine to recognize whether a given string is in a given set.

Duality: for any DFA, there exists a regular expression to describe
the same set of strings; for any regular expression, there exists a DFA
that recognizes the same set.

Practical consequence of duality proof: to match regular expression
patterns, (i) build DFA and (ii) simulate DFA on input string.

(a*ba*ba*ba*)* a*

multiple of 3 b's

Y NN
b

1

b

a aa

20

b
multiple of 3 b's

13

Implementing a Pattern Matcher

Problem: given a regular expression, create program that tests
whether given input is in set of strings described.

Step 1: build the DFA.
� A compiler!
� See COS 226 or COS 320.

Step 2: simulate it with given input.
� Easy.

State state = start;
while (!CharStdIn.isEmpty()) {

char c = CharStdIn.readChar())
state = state.next(c);

}
System.out.println(state.accept());

14

Application: Email Harvester

Harvest email addresses from web for spam campaign.
� User enters name of file and program prints email addresses.

import java.util.regex.Pattern;
import java.util.regex.Matcher;
public class EmailHarvester {

public static void main(String[] args) {
In in = new In(args[0]);
String input = in.readAll();
String regexp = "[a-z]+@([a-z]+\\.)+(edu|com|net|tv)";
Pattern pattern = Pattern.compile(regexp);
Matcher matcher = pattern.matcher(input);
while (matcher.find())

System.out.println(matcher.group());
}

}

% java EmailHarvester http://www.cs.princeton.edu/courses/cs126/precepts.html
pcalamia@cs.princeton.edu
dgabai@cs.princeton.edu
sgaw@cs.princeton.edu
wayne@cs.princeton.edu

simple email validator

OK to enter URL instead of file!

15

Application: Parsing a Data File

Parsing input files: TOY, Internet movie database, NCBI genome file.

String regexp = "[]*[0-9]+([actg]*).*";
Pattern pattern = Pattern.compile(regexp);
In in = new In(filename);
String line;
while ((line = in.readLine()) != null) {

Matcher matcher = pattern.matcher(line);
if (matcher.find()) {

String s = matcher.group(1).replaceAll(" ", "");
// do something with s

}
}

LOCUS AC146846 128142 bp DNA linear HTG 13-NOV-2003
DEFINITION Ornithorhynchus anatinus clone CLM1-393H9,
ACCESSION AC146846
VERSION AC146846.2 GI:38304214
KEYWORDS HTG; HTGS_PHASE2; HTGS_DRAFT.
SOURCE Ornithorhynchus anatinus (platypus)
ORIGIN

1 tgtatttcat ttgaccgtgc tgttttttcc cggtttttca gtacggtgtt agggagccac
61 gtgattctgt ttgttttatg ctgccgaata gctgctcgat gaatctctgc atagacagct // a comment

121 gccgcaggga gaaatgacca gtttgtgatg acaaaatgta ggaaagctgt ttcttcataa
...

128101 ggaaatgcga cccccacgct aatgtacagc ttctttagat tg
//

replace this RE with this string

just the RE part in parentheses

16

Fundamental Questions

Which languages CANNOT be described by any RE?
� Set of all bit strings with equal number of 0s and 1s.
� Set of all decimal strings that represent prime numbers.
� Many more. . . .

How can we extend REs to describe richer sets of strings?
� Context free grammar.
� Ex: Java language.

How can we make simple machines more powerful?

Are there any limits on what kinds of problems machines can solve?

http://java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html

see COS 320

17

Summary

Programmer.
� Regular expressions are a powerful pattern matching tool.
� Implement regular expressions with finite state machines.

Theoretician.
� Regular expression is a compact description of a set of strings.
� DFA is an abstract machine that solves pattern match problem for

regular expressions.
� DFAs and regular expressions have limitations.

You. Practical application of core CS principles.

Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • http://www.cs.Princeton.EDU/IntroCS

7.2: Turing Machines

Alan Turing (1912-1954)

Challenge: Design simplest machine that is
"as powerful" as conventional computers.

19

Turing Machine: Components

Alan Turing sought the most primitive model of a computing device.

Tape.
� Stores input, output, and intermediate results.
� One arbitrarily long strip, divided into cells.
� Finite alphabet of symbols.

Tape head.
� Points to one cell of tape.
� Reads a symbol from active cell.
� Writes a symbol to active cell.
� Moves left or right one cell at a time.

tape head

tape

20

Turing Machine: Fetch, Execute

States.
� Finite number of possible machine configurations.
� Determines what machine does and which way tape head moves.

State transition diagram.
� Ex. if in state 2 and input symbol is 1 then: overwrite the 1 with x,

move to state 0, move tape head to left.

0:x

1:x

#:##:#

#:#

#:#
1:x

0:x
0 1

2

4

3 5
L

R

R

R NY

… # # x x x 1 1 0 # # …Before

21

1

Turing Machine: Fetch, Execute

States.
� Finite number of possible machine configurations.
� Determines what machine does and which way tape head moves.

State transition diagram.
� Ex. if in state 2 and input symbol is 1 then: overwrite the 1 with x,

move to state 0, move tape head to left.

0:x

1:x

#:##:#

#:#

#:#
1:x

0:x
0 1

2

4

3 5
L

R

R

R NY

… # # x x x 1x 0 # # …xAfter

L

R

22

Turing Machine: Initialization and Termination

Initialization.
� Set input on some portion of tape.
� Set tape head.
� Set initial state.

Termination.
� Stop if enter yes, no, or halt state.
� Infinite loop possible.

… # # 0 0 1 1 1 0 # # …

0:x

1:x

#:##:#

#:#

#:#
1:x

0:x
0 1

2

4

3 5
L

R

R

R NY

… # # x x x x x x # # …

23

Example: Equal Number of 0's and 1's

… # # 0 0 1 1 1 0 # # …

0:x

1:x

#:##:#

#:#

#:#
1:x

0:x

find left end

skip x

find 1

find 0

accept reject

L

R

R

R NY

24

Turing Machine Summary

Goal: simplest machine that is "as powerful" as conventional computers.

Surprising Fact 1. Such machines are very simple.
Surprising Fact 2. Some problems cannot be solved by ANY computer.

Consequences.
� Precursor to general purpose programmable machines.
� Exposes fundamental limitations of all computers.
� Enables us to study the physics and universality of computation.
� No need to seek more powerful machines!

next lecture

