
Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • http://www.cs.Princeton.EDU/IntroCS

2.4 Input and Output

Today's goal: process huge amounts of data.

2

Input and Output

Input devices.

Output devices.

Our approach.
� Define Java interfaces for input and output.
� Use operating system (OS) to connect Java programs to:

– file system, each other, display

Display Speakers MP3 PlayerPrinter

MouseKeyboard Digital camera 3D ScannerStorage Network

Storage Network

3

Standard Output Abstraction

Standard output.
� Flexible OS abstraction for output.
� In Java, output from System.out.println goes to stdout.
� By default, stdout is sent to Terminal window.
� Can save output in a file instead of printing to screen

– without changing Java program!

Terminal

4

Standard Output

Terminal output.
� Run program and print output

to terminal window.

File output.
� Run program and use OS to redirect

output to a file.

command line input

% java Random 4
90 84 75 83

% java Random 4 > data.txt
% more data.txt
90 84 75 83 redirect stdout

public class Random {
public static void main(String[] args) {

int N = Integer.parseInt(args[0]);
for (int i = 0; i < N; i++) {

int r = (int) (Math.random() * 100);
System.out.print(r + " ");

}
System.out.println();

}
} prints N random integers between 0 and 99

5

Standard Input Abstraction

Command line inputs.
� Use command line inputs to read in a few user values.
� Not practical for many user inputs.

Standard input.
� Flexible OS abstraction for input.
� Java has built-in mechanisms for reading input from stdin.
� By default, stdin is received from Terminal window.
� Can read input from a file instead of typing at keyboard

– without changing Java program!

6

Standard Input

Standard input.
� Java supports reading from stdin, but library is cumbersome.
� We provide simplified version in library StdIn.java.

public class Average {
public static void main(String[] args) {

double x, sum = 0.0;
int N = 0;
while (!StdIn.isEmpty()) {

x = StdIn.readDouble();
sum += x;
N++;

}

System.out.println(sum / N);
}

}

7

Standard Input

Keyboard input.
� Run program and type data

values in terminal, separated
by whitespace.

� Windows users: type Ctrl-z instead of Ctrl-d.

To execute, must have a copy of StdIn.class in current directory.

% java Average
90
84
75
83
Ctrl-d
85.543256

Unix EOF

File input.
� Redirect stdin to run program on

data values stored in a file.

% more data.txt
90 84 75 83

% java Average < data.txt
85.543256

8

Connecting Programs

Pipes.
� OS abstraction to connect stdout of one command to stdin of another.
� Enables us to connect two different Java programs.
� Avoids creation of intermediate file data.txt.

% java Random 100 | java Average
50.24

% java Random 100000 | java Average
49.36149

% java Random 100000 | java Average
49.51199

% java Random 1000 | more
...

connect one Java program with a built-in
program to view results one screenful at a time

connect two different Java
programs

9

"Standard Output" for Graphics

We want analog of standard output for pictures.
� Java support graphics.
� We define our own abstractions to simplify things.

– output to display
– output to stdout in JPEG format
– output to stdout in PNG format

10

Turtle Graphics

Turtle graphics inspiration.
� Seymour Papert designed LOGO language to teach

computing concepts to children.
� You command turtle to move, turn, and draw

using relative coordinates.

� Or to fly to absolute coordinates and drop colored spots below.

(0, 0) (512, 0)

(256, 256 �3)
Turtle.forward(512); // forward 512
Turtle.rotate(120); // rotate 120°
Turtle.forward(512); // forward 512
Turtle.rotate(120); // rotate 120°
Turtle.forward(512); // forward 512
Turtle.rotate(120); // rotate 120°

Turtle.fly(256, 200); // go to (256, 200)
Turtle.spot(80); // drop spot of diameter 80

11

Data Analysis

Plotting points.
� Read in a sequence of (x, y) coordinates.
� Plot using Turtle graphics.

public class Plot {
public static void main(String args[]) {

Turtle.create(512, 512);
while (!StdIn.isEmpty()) {

double x = StdIn.readDouble();
double y = StdIn.readDouble();
Turtle.fly(x, y);
Turtle.spot(3);

}
Turtle.destroy();

}
}

% java Plot < data.txt

2,500 pairs of
real numbers

(0, 0)

(512, 512)

12

Chaos Game

Game played on equilateral triangle, with vertices R, G, B.
� Start at R.
� Repeat the following:

– pick a random vertex
– move halfway between current point and vertex
– draw a "dot" in color of vertex

Q. What picture emerges?

R: (0, 0) G: (512, 0)

B: (256, 256 �3)

0

1

2

3

4

5

6

13

Chaos Game

public class Chaos {
public static void main(String args[]) {

int N = Integer.parseInt(args[0]);
double size = Double.parseDouble(args[1]);
double x = 0.0, y = 0.0;
double x0, y0;
Turtle.create(512, 512);
for (int i = 0; i < N; i++) {

double r = Math.random();
if (r < 0.333) { x0 = 0.0; y0 = 0.0; }
else if (r < 0.667) { x0 = 512.0; y0 = 0.0; }
else { x0 = 256.0; y0 = 443.4; }
x = (x0 + x) / 2;
y = (y0 + y) / 2;
Turtle.fly(x, y);
Turtle.spot(size);
Turtle.pause(10);

}
Turtle.destroy();

}
}

256 �3

pick random
vertex

plot N points

move halfway

(usually best to avoid "hardwired" constants)

16

Saving Turtle Graphics to a File

To produce a portable network graphics (PNG) image file:
� Compile TurtlePNG.java to replace Turtle.class.
� Output goes to stdout instead of display.
� Use redirection to save in a file.

Other implementations of Turtle:
� Use TurtleJPEG.java to produce JPEG files.
� Use TurtleEPS.java to produce PostScript.

Note: client must call Turtle.destroy when done, or no output.

% javac TurtlePNG.java
% java Chaos 10000 5 > chaos.png

17

Animation

Animation loop.
� Move object.
� Draw object.
� Pause for a short while and display.
� Repeat.

Example: bouncing ball.
� Ball has position (px, py) and velocity (vx, vy).
� Detect collision with wall and reverse velocity.

18

Bouncing Ball

import java.awt.Color;
public class BouncingBall {

public static void main(String[] args) {
double px = 48.0, py = 120.0;
double vx = 7.0, vy = 3.7;
Turtle.create(512, 512);
while(true) {

if ((px + vx > 512.0) || (px + vx < 0.0)) vx = -vx;
if ((py + vy > 512.0) || (py + vy < 0.0)) vy = -vy;
px += vx;
py += vy;
Turtle.clear(Color.black);
Turtle.fly(px, py);
Turtle.spot(10);
Turtle.pause(50);

}
}

}

bounce

initial position
velocity

update position

clear background

draw image

pause for 50ms and display

needed for Color.black

19

Images and Sound Effects

Images.
� Put .gif, .png, or .jpg file in same directory as Java source file.
� Use Turtle.spot to draw it.

Sound effects.
� Put .wav, .mid, or .au file in same directory as Java source file.
� Use Turtle.grunt to play it.

Modify BouncingBall to display image and play sound upon collision.
� Replace Turtle.spot(10) with:

� Add following code when collision detected:

Turtle.grunt("laser.wav");

Turtle.spot("earth.gif");

20

Saving Turtle Graphics to a Movie

To produce a multi-image network graphics (MNG) movie file:
� Write the library TurtleMNG.java.
� Substitute this implementation for Turtle.

Other non-existing implementations of Turtle:
� Use TurtleQT.java to produce QuickTime movies.
� Use TurtleMPEG4.java to produce MPEG4 videos.

Moral.
� Having access to nice libraries is useful.
� Having a flexible interface is useful.

21

User Interfaces

Command line interface.
� User types commands at terminal.
� Easily customizable.
� Extends to complex command sequences.

Point and click.
� User launches applications by clicking.

– File � Open � HelloWorld.java
� Restricted to pre-packaged menu options.

See "In the Beginning was the Command Line" by Neal Stephenson.
� http://www.spack.org/words/commandline.html

22

Swing Graphical User Interface

"Swing" is Java's GUI.
� Buttons.
� Menus.
� Scrollbars.
� Toolbars.
� File choosers.

Don't worry about details for now.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class GUI extends JFrame implements ActionListener {
private int clicks = 0;
private JLabel label = new JLabel("Number of clicks: 0 ");
public GUI() {

JButton button = new JButton("Click Me");
button.addActionListener(this);
JPanel panel = new JPanel();
panel.setBorder(BorderFactory.createEmptyBorder(9, 9, 9, 9));
panel.setLayout(new GridLayout(0, 1));
panel.add(button);
panel.add(label);
getContentPane().add(panel, BorderLayout.CENTER);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setTitle("GUI");
pack();
show();

}

public void actionPerformed(ActionEvent e) {
clicks++;
label.setText("Number of clicks: " + clicks);

};

public static void main(String[] args) {
GUI gui = new GUI();

}
} A sample Swing application

