Corrected proof of stationarity equation for MCMC

As in class, the non-evidence variables are \(\mathbf{X} = \{X_1, \ldots, X_n\} \), and the evidence variables \(\mathbf{E} \) are set to \(\mathbf{e} \). The MCMC algorithm attempts to estimate the conditional distribution of one of the variables, say \(X_1 \), given the evidence \(\mathbf{e} \), i.e., \(\Pr[X_1 | \mathbf{e}] \).

We wish to show that the MCMC algorithm takes a random walk whose stationary distribution is given by

\[
\pi(x) = \Pr[\mathbf{X} = x | \mathbf{e}] = \Pr[x | \mathbf{e}],
\]

meaning that in the long run, the proportion of time steps at which the assignment \(x \) is visited by MCMC is roughly \(\pi(x) \). To show this, it suffices to prove the stationarity equation:

\[
\pi(x') = \sum_x \pi(x) q(x) P(x \rightarrow x')
\]

where \(q(x \rightarrow x') \) is the transition probability of moving from state (assignment) \(x \) to \(x' \). The point of this note is to give a proof of this equation.

We first need to compute this transition probability. This is where I made a mistake in my proof (thanks to Miro for figuring out my bug). If the current assignment is \(x \) and variable \(X_i \) is selected, then we change \(x_i \) to \(x'_i \) with probability

\[
\Pr[X_i = x'_i | x_{-i}, \mathbf{e}]
\]

where \(x_{-i} \) is the settings of all the (non-evidence) variables other than \(X_i \). Therefore, in class, I stated that \(q(x \rightarrow x') \) \(i \), the transition probability given that variable \(X_i \) has been selected, is equal to this probability. However, because no other values of \(x \) are modified, this is true only if the other values in \(x' \) match those in \(x \); otherwise, the probability is simply zero since there is no chance of making such a transition. In other words,

\[
q(x \rightarrow x') = \begin{cases}
\Pr[x'_i | x_{-i}, \mathbf{e}] & \text{if } x_{-i} = x'_{-i} \\
0 & \text{else}
\end{cases}
\]

Since each variable is selected with equal probability, the overall transition probability is

\[
q(x \rightarrow x') = \frac{1}{n} \sum_{i=1}^n q(x \rightarrow x')
\]

To prove the stationarity equation, we compute its right hand side:

\[
\sum_x \pi(x) q(x \rightarrow x') = \sum_x \pi(x) \cdot \frac{1}{n} \sum_{i=1}^n q(x \rightarrow x')
\]

\[
= \frac{1}{n} \sum_{i=1}^n \sum_x \pi(x) q(x \rightarrow x')
\]

\[
= \frac{1}{n} \sum_{i=1}^n \sum_{x: x_{-i} = x'_{-i}} \pi(x) \Pr[x'_i | x_{-i}, \mathbf{e}]
\]

As in class, if \(x_{-i} = x'_{-i} \) then

\[
\pi(x) \Pr[x'_i | x_{-i}, \mathbf{e}] = \Pr[x_i | \mathbf{e}] \cdot \Pr[x'_i | x_{-i}, \mathbf{e}]
\]

\[
\pi(x) \Pr[x'_i | x_{-i}, \mathbf{e}] = \Pr[x_i, x_{-i} | \mathbf{e}] \cdot \Pr[x'_i | x_{-i}, \mathbf{e}]
\]

\[
\pi(x) \Pr[x'_i | x_{-i}, \mathbf{e}] = \Pr[x_i | x_{-i}] \cdot \Pr[x'_i | x_{-i}, \mathbf{e}]
\]

\[
\pi(x) \Pr[x'_i | x_{-i}, \mathbf{e}] = \Pr[x'_i | x_{-i}] \cdot \Pr[x_i | x_{-i}]
\]

\[
\pi(x) \Pr[x'_i | x_{-i}, \mathbf{e}] = \pi(x) \Pr[x_i | x_{-i}]
\]

by definition of \(\pi \).
So, plugging into the derivation above, we get that the right hand side of the stationarity equation is

\[
\sum_{x} \pi(x)q(x \rightarrow x') = \frac{1}{n} \sum_{i=1}^{n} \sum_{x: x_{-i}=x'_{-i}} \pi(x') \Pr[x_i | x_{-i}, e] \\
= \pi(x') \cdot \frac{1}{n} \sum_{i=1}^{n} \sum_{x: x_{-i}=x'_{-i}} \Pr[x_i | x_{-i}, e] \quad \text{pulling } \pi(x') \text{ out of the sum} \\
= \pi(x') \cdot \frac{1}{n} \sum_{i=1}^{n} \sum_{x: x_{-i}=x'_{-i}} \Pr[x_i | x'_{-i}, e] \quad \text{since } x_{-i} = x'_{-i} \text{ inside the sum} \\
= \pi(x') \cdot \frac{1}{n} \sum_{i=1}^{n} \Pr[x_i | x'_{-i}, e] \quad \text{since only } x_i \text{ is changing in the sum,} \\
= \pi(x') \cdot \frac{1}{n} \sum_{i=1}^{n} 1 \quad \text{and } x_{-i} \text{ does not appear inside of it} \\
= \pi(x').
\]

This was the desired result showing that the stationarity equation holds.