The training error theorem for boosting

Here is pseudocode for the AdaBoost boosting algorithm presented in class:

Given: \((x_1, y_1), \ldots, (x_N, y_N)\) where \(x_i \in X, y_i \in \{-1, +1\}\)
Initialize \(D_1(i) = 1/N\).
For \(t = 1, \ldots, T\):

- Train weak learner using training data weighted according to distribution \(D_t\).
- Get weak hypothesis \(h_t : X \rightarrow \{-1, +1\}\).
- Measure “goodness” of \(h_t\) by its weighted error with respect to \(D_t\):
 \[
 \epsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i] = \sum_{i : h_t(x_i) \neq y_i} D_t(i).
 \]
- Let \(\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)\).
- Update:
 \[
 D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases}
 e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\
 e^{\alpha_t} & \text{if } y_i \neq h_t(x_i)
 \end{cases}
 \tag{1}
 \]
where \(Z_t\) is a normalization factor (chosen so that \(D_{t+1}\) will be a distribution).

Output the final classifier:
\[
H(x) = \text{sign} \left(\sum_{t=1}^T \alpha_t h_t(x) \right).
\]

Although the notation is different, this algorithm is the same as in Fig. 18.10 of R&N.

In class, we proved the training error theorem, which states that the training error of \(H\) is at most
\[
\exp \left(-2 \sum_{t=1}^T \gamma_t^2 \right)
\]
where \(\epsilon_t = \frac{1}{2} - \gamma_t\).

We prove this in three steps.

Step 1: The first step is to show that
\[
D_{T+1}(i) = \frac{1}{N} \cdot \frac{\exp(-y_i f(x_i))}{\prod_t Z_t}
\]
where
\[
f(x) = \sum_t \alpha_t h_t(x).
\]
Proof: Note that Eq. (1) can be rewritten as
\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]
since \(y_i \) and \(h_t(x_i) \) are both in \([-1,+1]\). Unwrapping this recurrence, we get that

\[
D_{T+1}(i) = D_1(i) \cdot \frac{\exp(-\alpha_1 y_i h_1(x_i))}{Z_1} \cdots \frac{\exp(-\alpha_T y_i h_T(x_i))}{Z_T}
\]

\[
= \frac{1}{N} \sum_i \exp(-y_i \sum_t \alpha_t h_t(x_i)) \prod_t Z_t
\]

\[
= \frac{1}{N} \exp(-y_i f(x_i)) \prod_t Z_t.
\]

Step 2: Next, we show that the training error of the final classifier \(H \) is at most

\[
\prod_{t=1}^T Z_t.
\]

Proof:

- training error\((H) = \frac{1}{N} \sum_i \left\{ \begin{array}{ll} 1 & \text{if } y_i \neq H(x_i) \\ 0 & \text{else} \end{array} \right. \quad \text{by definition of the training error}
- = \frac{1}{N} \sum_i \left\{ \begin{array}{ll} 1 & \text{if } y_i f(x_i) \leq 0 \\ 0 & \text{else} \end{array} \right. \quad \text{since } H(x) = \text{sign}(f(x)) \text{ and } y_i \in \{-1,+1\}
- \leq \frac{1}{N} \sum_i \exp(-y_i f(x_i)) \quad \text{since } e^{-z} \geq 1 \text{ if } z \leq 0
- = \sum_i D_{T+1}(i) \prod_t Z_t \quad \text{by Step 1 above}
- = \prod_t Z_t \quad \text{since } D_{T+1} \text{ is a distribution}

Step 3: The last step is to compute \(Z_t \).

We can compute this normalization constant as follows:

\[
Z_t = \sum_i D_t(i) \times \left\{ \begin{array}{ll} e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\ e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \end{array} \right.
\]

\[
= \sum_{i: h_t(x_i) = y_i} D_t(i) e^{-\alpha_t} + \sum_{i: h_t(x_i) \neq y_i} D_t(i) e^{\alpha_t}
\]

\[
= e^{-\alpha_t} \sum_{i: h_t(x_i) = y_i} D_t(i) + e^{\alpha_t} \sum_{i: h_t(x_i) \neq y_i} D_t(i)
\]

\[
= e^{-\alpha_t} (1 - \epsilon_t) + e^{\alpha_t} \epsilon_t \quad \text{by definition of } \epsilon_t
\]

\[
= 2 \sqrt{\epsilon_t (1 - \epsilon_t)}
\]

\[
= \sqrt{1 - 4 \gamma^2_t}
\]

\[
\leq e^{-2 \gamma^2_t}.
\]

Combining with Step 2 gives the claimed upper bound on the training error of \(H \).