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Abstract

Most currently proposed solutions to application-level mul-
ticast organize the group members into an application-level
mesh over which a Distance-Vector routing protocol, or a
similar algorithm, is used to construct source-rooted distri-
bution trees. The use of a global routing protocol limits the
scalability of these systems. Other proposed solutions that
scale to larger numbers of receivers do so by restricting the
multicast service model to be single-sourced. In this paper,
we propose an application-level multicast scheme capable of
scaling to large group sizes without restricting the service
model to a single source. Our scheme builds on recent work
on Content-Addressable Networks (CANs). Extending the
CAN framework to support multicast comes at trivial ad-
ditional cost and, because of the structured nature of CAN
topologies, obviates the need for a multicast routing algo-
rithm. Given the deployment of a distributed infrastructure
such as a CAN, we believe our CAN-based multicast scheme
offers the dual advantages of simplicity and scalability.

1 Introduction

A number of applications such as software distribu-
tion, Internet TV, video-conferencing and shared white-
boards [10, 5, 8, 7] require one-to-many message trans-
mission to enable efficient many-to-many communica-
tion. The IP Multicast service [2] was proposed as an
extension to the Internet architecture to support effi-
cient multi-point packet delivery at the network level.
With IP Multicast, a single packet transmitted at the
source is delivered to an arbitrary number of receivers
by replicating the packet within the network at fan-
out points (routers) along a distribution tree rooted at
the traffic’s source. IP Multicast has been studied for
many years now. Yet, IP multicast deployment has
been slowed by difficult issues related to scalable inter-
domain routing protocols, charging models, robust con-
gestion control schemes and so forth [3, 4, 9]. Because

of the problems facing the deployment of a network-
level multicast service, many recent research proposals
have argued for an application-level multicast service
[1, 3, 4] and have described designs for such a service
and its applications.

The majority of these proposed solutions (for exam-
ple [1, 4]) typically involve having the members of a
multicast group self-organize into an essentially ran-
dom application-level mesh topology over which a tra-
ditional multicast routing algorithm such as DVMRP
[2] is used to construct distribution trees rooted at each
possible traffic source. 1 Such routing algorithms re-
quire every node to periodically announce its estimated
distance from every possible destination to its local
neighbors and hence every node maintains state for ev-
ery other node in the topology. Further, in the case
of a change in the topology, every node must learn
about this change and update its routing table if re-
quired. Hence, although these proposed solutions are
well suited to their targeted applications, 2 their use of
a global routing algorithm limits their ability to scale
to large (more than a thousand nodes) group sizes and
to operate under conditions of dynamic group member-
ship.

Other recently proposed application-level multicast
schemes [16] that scale to larger numbers of receivers
do so by restricting the service model to a single traf-
fic source and are not well suited to applications like
distributed simulations, multi-player games and large-
scale collaborative applications.

1Yoid [3] is probably the only exception to the above strategy
in that it directly constructs a single shared tree without building a
mesh first

2The authors in [4], state that they believe End System Mul-
ticast is more appropriate for small size and sparse groups as in
audio-video conferencing and virtual classrooms, while the authors
in [1] apply their algorithm, Gossamer, to the self-organization of
infrastructure proxies
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In this paper, we propose an application-level mul-
ticast scheme capable of scaling to large group sizes
without restricting the service model to a single
source. Our scheme leverages recent work on Content-
Addressable Networks (CANs) [11]. Briefly, 3 a
Content-Addressable Network is an application-level
network whose constituent nodes can be thought of
as forming a virtual

�
-dimensional Cartesian coordi-

nate space. Every node in a CAN “owns” a portion
of the total space. For example, Figure 1 shows a 2-
dimensional CAN occupied by 5 nodes. A CAN is scal-
able, fault-tolerant and completely distributed. Such
CANs are useful for a range of distributed applications
and services. For example, in [11] we focus on the
use of a CAN to provide hash table-like functionality
on Internet-like scales – a function useful for indexing
in peer-to-peer applications, large-scale storage man-
agement systems, the construction of wide-area name
resolution services and so forth.

This paper looks into the question of how the de-
ployment of such CAN-like distributed infrastructures
might be utilized to support multicast services and ap-
plications. We outline the design of an application-level
multicast scheme built using a CAN. Our design shows
that extending the CAN framework to support multicast
comes at trivial additional cost in terms of complex-
ity and added protocol mechanism. A key feature of
our scheme is that because we exploit the well-defined
structured nature of CAN topologies (i.e. the virtual
coordinate space) we can eliminate the need for a mul-
ticast routing algorithm to construct distribution trees.
This allows our CAN-based multicast scheme to scale
to large group sizes.

In summary, we believe our CAN-based multicast
scheme offers two key advantages:

� CAN-based multicast can scale to very large (i.e.
many thousands of nodes and higher) group sizes
without restricting the service model to a single-
source. To the best of our knowledge, no currently
proposed application-level multicast scheme can
operate in this regime.

� Assuming the deployment of a CAN-like infras-
tructure, CAN-based multicast is trivially simple
to achieve. This is not to suggest that CAN-based
multicast by itself is either simpler or more com-
plex than other proposed solutions to application-
level multicast. Rather, our point is that CANs can

3Section 2 describes the CAN design in some detail

serve as a building block in a range of Internet ap-
plications and services and that one such, easily
achievable, service is application-level multicast.

Several recent research papers [13, 15, 12] pro-
pose systems similar to CANs in that they construct
application-level networks where nodes are structured
in a well-defined manner. While our design is in the
context of CANs in particular, we believe our technique
of exploiting the structure of these systems should be
applicable to the Chord [13], Pastry [12] and Tapestry
[15] designs.

The remainder of this paper is organized as follows:
Section 2 reviews the design and operation of a CAN.
We describe the design of a CAN-based multicast ser-
vice in Section 3 and evaluate this design through sim-
ulation in Section 4. Finally, we discuss related work in
Section 5 and conclude.

2 Content-Addressable Networks

In this Section, we present our design of a Content-
Addressable Network. This paper gives only a brief
overview of our CAN design; [11] presents the details
and evaluation.

2.1 Design Overview

Our design centers around a virtual
�
-dimensional

Cartesian coordinate space on a
�
-torus. 4 This coordi-

nate space is completely logical and bears no relation to
any physical coordinate system. At any point in time,
the entire coordinate space is dynamically partitioned
among all the nodes in the system such that every node
“owns” its individual, distinct zone within the overall
space. For example, Figure 1 shows a 2-dimensional� �����	��
�� �����	�

coordinate space partitioned between 5
CAN nodes. This coordinate space provides us with a
level of indirection, since one can now talk about stor-
ing content at a “point” in the space or routing between
“points” in the space where a “point” refers to the node
in the CAN that owns the zone enclosing that point.

For example, this virtual coordinate space is used
to store (key,value) pairs as follows: to store a pair
(  � , � � ), key  � is deterministically mapped onto a
point, say ��� ����� in the coordinate space using a uniform
hash function. The corresponding key-value pair is then

4For simplicity, the illustrations in this paper do not show a
torus, so the reader must remember that the coordinate space wraps
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stored at the node that owns the zone within which the
point ��� ����� lies. To retrieve an entry corresponding
to key  � , any node can apply the same determinis-
tic hash function to map  � onto point ��� ����� and then
retrieve the corresponding value from the point ��� ��� � .
If the point ��� ��� � is not owned by the requesting node
or its immediate neighbors, the request must be routed
through the CAN infrastructure until it reaches the node
in whose zone ��� ��� � lies. Efficient routing is therefore
a critical aspect of our CAN.

Nodes in the CAN self-organize into an overlay net-
work that represents this virtual coordinate space. A
node learns and maintains as its set of neighbors the IP
addresses of those nodes that hold coordinate zones ad-
joining its own zone. This set of immediate neighbors
serves as a coordinate routing table that enables routing
between arbitrary points in the coordinate space.

We first describe the three most basic pieces of our
design: CAN routing, construction of the CAN coordi-
nate overlay, and maintenance of the CAN overlay and
then briefly discuss the simulated performance of our
design.

2.2 Routing in a CAN

Intuitively, routing in a Content Addressable Network
works by following the straight line path through the
Cartesian space from source to destination coordinates.

A CAN node maintains a coordinate routing table
that holds the IP address and virtual coordinate zone
of each of its neighbors in the coordinate space. In a�

-dimensional coordinate space, two nodes are neigh-
bors if their coordinate spans overlap along

� � �
di-

mensions and abut along one dimension. For example,
in Figure 2, node 5 is a neighbor of node 1 because
its coordinate zone overlaps with 1’s along the Y axis
and abuts along the X-axis. On the other hand, node
6 is not a neighbor of 1 because their coordinate zones
abut along both the X and Y axes. This purely local
neighbor state is sufficient to route between two arbi-
trary points in the space: A CAN message includes the
destination coordinates. Using its neighbor coordinate
set, a node routes a message towards its destination by
simple greedy forwarding to the neighbor with coordi-
nates closest to the destination coordinates. Figure 2
shows a sample routing path.

For a
�

dimensional space partitioned into �
equal zones, the average routing path length is thus
� ����� � � � ���
	 �

and individual nodes maintain � � neigh-
bors. These scaling results mean that for a

�
dimen-

sional space, we can grow the number of nodes (and
hence zones) without increasing per node state while
the path length grows as � � � ���
	 �

.

Note that many different paths exist between two
points in the space and so, even if one or more of a
node’s neighbors were to crash, a node would automat-
ically route along the next best available path.

If however, a node loses all its neighbors in a certain
direction, and the repair mechanisms described in Sec-
tion 2.4 have not yet rebuilt the void in the coordinate
space, then greedy forwarding may temporarily fail. In
this case, a node may use an expanding ring search to
locate a node that is closer to the destination than itself.
The message is then forwarded to this closer node, from
which greedy forwarding is resumed.
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2.3 CAN construction

As described above, the entire CAN space is divided
amongst the nodes currently in the system. To allow the
CAN to grow incrementally, a new node that joins the
system must be allocated its own portion of the coor-
dinate space. This is done by an existing node splitting
its allocated zone in half, retaining half and handing the
other half to the new node.

The process takes three steps:

1. First the new node must find a node already in the
CAN.

2. Next, using the CAN routing mechanisms, it must
find a node whose zone will be split.

3. Finally, the neighbors of the split zone must be no-
tified so that routing can include the new node.

Bootstrap

A new CAN node first discovers the IP address of any
node currently in the system. The functioning of a CAN
does not depend on the details of how this is done, but
we use the same bootstrap mechanism as Yallcast and
YOID [3].

As in [3] we assume that a CAN has an associated
DNS domain name, and that this resolves to the IP ad-
dress of one or more CAN bootstrap nodes. A bootstrap
node maintains a partial list of CAN nodes it believes
are currently in the system. Simple techniques to keep
this list reasonably current are described in [3].

To join a CAN, a new node looks up the CAN do-
main name in DNS to retrieve a bootstrap node’s IP
address. The bootstrap node then supplies the IP ad-
dresses of several randomly chosen nodes currently in
the system.

Finding a Zone

The new node then randomly chooses a point ��� ��� � in
the space and sends a JOIN request destined for point
��� ����� . This message is sent into the CAN via any
existing CAN node. Each CAN node then uses the
CAN routing mechanism to forward the message, un-
til it reaches the node in whose zone ��� ����� lies.

This current occupant node then splits its zone in half
and assigns one half to the new node. The split is done
by assuming a certain ordering of the dimensions in de-
ciding along which dimension a zone is to be split, so

that zones can be re-merged when nodes leave. For a
2-d space a zone would first be split along the X di-
mension, then the Y and so on. The (key, value) pairs
from the half zone to be handed over are also transfered
to the new node.

Joining the Routing

Having obtained its zone, the new node learns the IP ad-
dresses of its coordinate neighbor set from the previous
occupant. This set is a subset of the the previous oc-
cupant’s neighbors, plus that occupant itself. Similarly,
the previous occupant updates its neighbor set to elim-
inate those nodes that are no longer neighbors. Finally,
both the new and old nodes’ neighbors must be in-
formed of this reallocation of space. Every node in the
system sends an immediate update message, followed
by periodic refreshes, with its currently assigned zone
to all its neighbors. These soft-state style updates en-
sure that all of their neighbors will quickly learn about
the change and will update their own neighbor sets ac-
cordingly. Figures 2 and 3 show an example of a new
node (node 7) joining a 2-dimensional CAN.

As can be inferred, the addition of a new node af-
fects only a small number of existing nodes in a very
small locality of the coordinate space. The number of
neighbors a node maintains depends only on the dimen-
sionality of the coordinate space and is independent of
the total number of nodes in the system. Thus, node in-
sertion affects only O(number of dimensions) existing
nodes which is important for CANs with huge numbers
of nodes.

2.4 Node Departure, Recovery and CAN
Maintenance

When nodes leave a CAN, we need to ensure that the
zones they occupied are taken over by the remaining
nodes. The normal procedure for doing this is for a
node to explicitly hand over its zone and the associated
(key,value) database to one of its neighbors. If the zone
of one of the neighbors can be merged with the depart-
ing node’s zone to produce a valid single zone, then this
is done. If not, then the zone is handed to the neighbor
whose current zone is smallest, and that node will then
temporarily handle both zones.

The CAN also needs to be robust to node or net-
work failures, where one or more nodes simply become
unreachable. This is handled through a recovery algo-
rithm, described in [11], that ensures one of the failed
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node’s neighbors takes over the zone.
Finally, both the normal leaving procedure and the

recovery algorithms can result in a node holding more
than one zone. To prevent repeated further fragmenta-
tion of the space, a background zone-reassignment al-
gorithm, which we describe in [11], runs to ensure that
the CAN tends back towards one zone per node.

2.5 Design Improvements and Performance

Our basic CAN algorithm as described in the previ-
ous section provides a balance between low per-node
state ( � � � � for a

�
dimensional space) and short path

lengths with � � � � ���
	 �
hops for

�
dimensions and �

nodes. This bound applies to the number of hops in
the CAN path. These are application level hops, not
IP-level hops, and the latency of each hop might be sub-
stantial; recall that nodes that are adjacent in the CAN
might be many miles (and many IP hops) away from
each other. In [11], we describe a number of design
techniques whose primary goal is to reduce the latency
of CAN routing. Of particular relevance to the work in
this paper, is a distributed “binning” scheme whereby
co-located nodes on the Internet can be placed close by
in the CAN coordinate space. In this scheme, every
node independently measures its distance (i.e. latency)
from a set of well known landmark machines and joins
a particular portion of the coordinate space based on
these measurements. Our simulation results in [11] in-
dicate that these added mechanisms are very effective
in reducing overall path latency. For example, we show
that for a system with over 130,000 nodes, for a range
of link delay distributions, we can route with a latency
that is well within a factor of three of the underlying IP
network latency. The number of neighbors that a node
must maintain to achieve this is approximately 28 (de-
tails of this test are in Section 4 in [11]).

3 CAN-based Multicast

In this section, we describe a solution whereby CANs
can be used to offer an application-level multicast ser-
vice.

If all the nodes in a CAN are members of a given
multicast group, then multicasting a message only re-
quires flooding the message over the entire CAN. As we
shall describe in Section 3.2, we can exploit the exis-
tence of a well defined coordinate space to provide sim-
ple, efficient flooding algorithms from arbitrary sources

without having to compute distribution trees for every
potential source.

If only a subset of the CAN nodes are members of a
particular group, then multicasting involves two pieces:

� the members of the group first form a group-
specific ”mini” CAN and then,

� multicasting is achieved by flooding over this mini
CAN

In what follows, we describe the two key components
of our scheme: group formation and multicast by flood-
ing over the CAN.

3.1 Multicast Group Formation

To assist in our explanation, we assume the existence
of a CAN � within which a subset of the nodes wish to
form a multicast group � . We achieve this by forming
an additional mini CAN, call it ��� , made up of only
the members of � . The underlying CAN � itself is
used as the bootstrap for the formation of ��� as fol-
lows: using a well-known hash function, the group ad-
dress � is deterministically mapped onto a point, say
��� ����� , and the node on � that owns the point ��� �����
serves as the bootstrap node in the construction of ��� .
Joining group � thus reduces to joining the CAN ��� .
This is done by repeating the usual CAN construction
process with ��� ����� as the bootstrap node. Because of
the light-weight nature of the CAN bootstrap mecha-
nisms, we do not expect the CAN bootstrap node to be
overloaded by join requests. If this becomes a possi-
bility however, one could use multiple bootstrap nodes
to share the load by using multiple hash functions to
deterministically map the group name � onto multiple
points in the CAN � ; the nodes corresponding to each
of these points would then serve as a bootstrap node
for the group � . As with the CAN bootstrap process,
the failure of the bootstrap node(s) does not affect the
operation of the multicast group itself; it only prevents
new nodes from joining the group during the period of
failure.

Thus, every group has a corresponding CAN made
up of all the group members. Note that with this group
formation process a node only maintains state for those
groups for which it is itself a member or for which it
serves as the bootstrap node. For a

�
-dimensional CAN,

a member node maintains state for � � additional nodes
(its neighbors in the CAN), independent of the number
of traffic sources in the multicast group.
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3.2 Multicast forwarding

Because all the members of group � (and no other
node) belong to the associated CAN � � , multicasting
to � is achieved by flooding on the CAN ��� . Differ-
ent flooding algorithms are conceivable; for example,
one might consider a naive flooding algorithm wherein
a node caches the sequence numbers of messages it
has recently received. On receiving a new message,
a node forwards the message to all its neighbors (ex-
cept of course, the neighbor from which it received
the message) only if that message is not already in its
cache. With this type of floodcachesuppress algorithm
a source can reach every group member with requiring
a routing algorithm to discover the network topology.
Such an algorithm does not make any special use of
the CAN structure and could in fact be run over any
application-level topology including a random mesh
topology as generated in [4, 1]. The problem with this
type of naive flooding algorithm is that it can result in
a large amount of duplication of messages; in the worst
case, a node could receive a single message from each
of its neighbors.

A more efficient flooding solution would be to ex-
ploit the coordinate space structure of the CAN as fol-
lows:

Assume that our CAN is a
�
-dimensional CAN with

dimensions
������� �

. Individual nodes thus have at least
� � neighbors; 2 per dimension with one to move for-
ward and another to move in reverse along each di-
mension. i.e. for every dimension

�
a node has at

least one neighbor whose zone abuts its own own in the

forward direction along
�

and another neighbor whose
zone abuts its own in the reverse direction along

�
. For

example, consider node � in Figure 4: node � abuts �
in the reverse direction along dimension 1 while nodes
� and � abut � in the forward direction along dimen-
sion 1.

Messages are then forwarded as follows:

1. The source node (i.e. node that generates a new
message) forwards a message to all its neighbors

2. A node that receives a message from a neighbor
with which it abuts along dimension

�
forwards

the message to those neighbors with which it abuts
along dimension

������� � � � � �
and the neighbors

with which it abuts along dimension
�

in the op-
posite direction to that from which it received the
message. Figure 4 depicts this directed flooding
algorithm for a 2-dimensional CAN.

3. a node does not forward a message along a par-
ticular dimension if that message has already tra-
versed at least half-way across the space from the
source coordinates along that dimension. This rule
prevents the flooding from looping round the back
of the space.

4. a node caches the sequence numbers of messages
it has received and does not forward a message that
it has already previously received

For a perfectly partitioned (i.e. where nodes have
equal sized zones) coordinate space, the above algo-
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rithm ensures that every node receives a message ex-
actly once. For imperfectly partitioned spaces however,
a node might receive the same message from more than
one neighbor. For example, in Figure 4, node � would
receive a message from both neighbors � and � .

Certain duplicates can be easily avoided because, un-
der normal CAN operation, every node knows the zone
coordinates for each of its neighbors. For example, con-
sider once more Figure 4; nodes � and � both know
each others’ and node � ’s zone coordinates and could
hence use a deterministic rule such that only one of
them forwards messages to � . Such a rule, however,
only eliminates duplicates that arise by flooding along
the first dimension. The rule works along the first di-
mension because, all nodes forward along the first di-
mension. Hence even if a node, by applying some
deterministic rule, does not forward a message to its
neighbor along the first dimension, we know that some
other node that does satisfy the deterministic rule will
do so. But this need not be the case when forward-
ing along higher dimensions. Consider a 3-dimensional
CAN; if a node by the application of a deterministic
rule decides not to forward to a neighbor along the sec-
ond dimension, there is no guarantee that any node will
eventually forward it up along the second dimension
because the node that does satisfy the deterministic rule
might receive the packet along the first dimension and
hence will not forward the message along the second di-
mension. 5 For example, in Figure 4 let us assume that
node � decides (by the use of some deterministic rule)
not to forward to node � . Because node � receives the
message (from � ) along the first dimension, it will not
forward the message along the second dimension either
and hence node � and the other nodes with � -axis co-
ordinates in the same range as � , will never receive the
message.

While the above strategy does not eliminate all du-
plicates, it does eliminate a large fraction of it because
most of the flooding occurs along the first dimension.

Hence, we augment the above flooding algorithm
with the following deterministic rule used to eliminate
duplicates that arise from forwarding along the first di-
mension:

� let us assume that a node, � , received a message
along dimension

�
and that node � abuts � along

dimension 1 in the opposite direction from which
� received the message. Consider the corner ��� of

5By the second rule in the flooding algorithm.

� ’s zone that abuts � along dimension 1 and has
the lowest coordinates along dimensions �

����� �
.

Then, � only forwards the message on to � , if
� is in contact with the corner ��� .

So, for example, in Figure 4, with respect to nodes
� and � , the corner under consideration for node �
would be the lower, leftmost corner of � ’s zone. Hence
only � (and not � ) would forward messages � in the
forward direction along the first dimension.

For the above flooding algorithm, we measured
through simulation the percentage of nodes that experi-
enced different degrees of message duplication caused
by imperfectly partitioned spaces. Figure 5 plots the
number of nodes that received a particular number of
duplicate messages for a system with 16,384 nodes us-
ing CANs with dimensions ranging from 2 to 6. In all
cases, over 97% of the nodes receive no duplicate mes-
sages and amongst those nodes that do, virtually all of
them receive only a single duplicate message. This is
a considerable improvement over the naive flooding al-
gorithm wherein every node might receive a number of
duplicates up to the degree (number of neighbors) of
the node.

It is worth noting that the naive flooding algorithm is
very robust to message loss because a node can receive
a message via any of its neighbors. However, the effi-
cient flooding algorithm is less robust because the loss
of a single message results in the breakdown of mes-
sage delivery to several subsequent nodes thus requir-
ing additional loss recovery techniques. This problem
is however, no different than in the case of traditional IP
multicast or other application-level schemes where the
loss of a packet along a single link results in the packet
being lost by all downstream nodes in the distribution
tree.

With both flooding algorithms, the duplication of
messages arises because we do not (unlike most other
solutions to multicast delivery) construct a single span-
ning tree rooted at the source of traffic. However, we
believe that the simplicity and scalability gained by not
having to run routing algorithms to construct and main-
tain such delivery trees is well worth the slight inef-
ficiencies that may arise from the duplication of mes-
sages.

Using the above flooding algorithm, any group mem-
ber can multicast a message to the entire group. Nodes
that are not group members can also multicast to the
entire group by first discovering a random group mem-
ber and relaying the transmission through this random
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group member. 6 This random member node can be
discovered by contacting the bootstrap node associated
with the group name.

4 Performance Evaluation

In this section, we evaluate, through simulation, the
performance of our CAN-based multicast scheme. We
adopt the performance metrics and evaluation strategy
used in [4]. We compare the performance of CAN-
based multicast to native IP multicast and naive unicast-
based multicast where the source simply unicasts a
message to every receiver in succession. Our evalua-
tion metrics are:

� Relative Delay Penalty (RDP): the ratio of the
delay between two nodes (in this case, the source
node and a receiver) using CAN-based multicast
to the unicast delay between them on the underly-
ing physical network

� Link Stress: the number of identical copies of a
packet carried by a physical link

Our simulations were performed on Transit-Stub
(TS) topologies using the GT-ITM topology generator
[14]. TS topologies model networks using a 2-level hi-
erarchy of routing domains with transit domains that
interconnect lower level stub domains.

4.1 Relative Delay Penalty

We first present results from a multicast transmission
using a single source as this represents the performance
typically seen across the different receiver nodes for a
transmission from a single source. These simulations
were performed using a CAN with 6 dimensions and a
group size of 8192 nodes. The source node was selected
at random. We used Transit-Stub topologies with link
latencies of 20ms for intra-transit domain links, 5ms for
stub-transit links and 2ms for intra-stub domain links.

Both IP multicast and Unicast-based multicast
achieve an RDP value of one for all group members be-
cause messages are transmitted along the direct phys-
ical (IP-level) path between the source and receivers.
Routing on an overlay network however, fundamentally

6Note that relaying in our case is different from relayed trans-
missions as done in source specific multicast [16] because only
transmissions from non-member nodes are relayed and even these
can be relayed through any member node.

results in higher delays. Figure 6 plots the cumulative
distribution of RDP over the group members. While
the majority of receivers see an RDP of less than about
5 or 6, a few group members have a high RDP. This can
be explained 7 from the scatter-plot in Figure 7. The
figure plots the relation between the RDP observed by
a receiver and its distance from the source on the un-
derlying IP-level, physical network. Each point in Fig-
ure 7 indicates the existence of a receiver with the cor-
responding RDP and IP-level delay. As can be seen, all
the nodes with high values of RDP have a low phys-
ical delay to the source, i.e. the very low delay from
these receivers to the source inflates their RDP. How-
ever, the absolute value of their delay from the source
on the CAN overlay is not really very high. This can be
seen from Figure 8, which plots, for every receiver, its
delay from the source using CAN multicast versus its
physical network delay. The plot shows that while the
maximum physical delay can be about 100ms, the max-
imum delay using CAN-multicast is about 600ms and
the receivers on the left hand side of the graph, which
had the high RDP, experience delays of not more than
300ms.

The above results were all for a single multicast
transmission using a single source; Figure 9 plots the
cumulative distribution of the RDP with the delays av-
eraged over multicast transmissions from a 100 sources
selected at random. Because a node is unlikely to
be very close (in terms of physical delay) to all 100
sources, averaging the results over transmissions from
many sources helps to reduce the appearance of inflated
RDPs that occurs when a receiver is very close to the
source. From Figure 9 we see that, on an average, no
node sees an RDP of more than about 6.0.

Finally, Figure 10 plots the 50 and 90 percentile RDP
values for group sizes ranging from 128 to 65,000 for a
single source. We scale the group size as follows: we
take a 1,000 node Transit-Stub topology as before and
to this topology, we add end-host (source and receiver)
nodes to the stub (leaf) nodes in the topology. The de-
lay of the link from the end-host node to the stub node
is set to 1ms. Thus in scaling the group size from a 128
to 65K nodes, we’re scaling the density of the graph
without scaling the backbone (transit) domain. So, for
example, a group size of 128 nodes implies that approx-
imately one in ten stub nodes has an associated group
member while a group size of 65K implies that ev-
ery stub node has approximately 65 attached end-host

7The authors in [4] make the same observation and explanation
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Figure 6: Cumulative distribution of RDP
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over 100 traffic sources
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nodes. This method of scaling the graph causes the flat
trend in the growth of RDP with group size because for
a given source the relative number of close-by and dis-
tant nodes stays pretty much constant. Further, at high
density, every CAN node has increasingly many close-
by nodes and hence the CAN binning technique used
to cluster co-located nodes yields higher gains. Differ-
ent methods for scaling topologies could yield different
scaling trends.

While the significant differences between End-
System Multicast and CAN-based multicast makes it
hard to draw any direct comparison between the two
systems; Figure 10 indicates that the performance of
CAN-based multicast even for small group sizes is
competitive with End-System multicast.

4.2 Link Stress

Ideally, one would like the stress on the different phys-
ical links to be somewhat evenly distributed. Using na-
tive IP multicast, every link in the network has a stress
of exactly one. In the case of unicasting from the source
directly to all the receivers, links close to the source
node have very high stress (equal to the group size at the
first hop link from the source). Figure 11 plots the num-
ber of nodes that experienced a particular stress value
for a group size of 1024 for a 6-dimensional CAN. Un-
like naive unicast where a small number of links see
extremely high stress, CAN-based multicast distributes
the stress much more evenly over all the links.

Figure 12 plots the worst-case stress for group sizes
ranging from 128 to 65,000 nodes. The high stress in
the case of large group sizes is because, as described
earlier, we scale the group size without scaling the size
of the backbone topology. For the above simulation,
we used a transit-stub topology with a 1,000 nodes.
Hence for a group size of 65,000 nodes, all 65,000
nodes are interconnected by a backbone topology of
less than 1,000 nodes thus putting high stress on some
backbone links. We repeated the above simulation for a
transit-stub topology with 10,000 nodes, thus decreas-
ing the density of the graph by a factor of 10. Fig-
ure 13 plots the worst-case stress for group sizes up
to 2,048 nodes 8 for all three cases (i.e. CAN-based
multicast using Transit-Stub topologies with 1,000 and
10,000 nodes and naive unicast-based multicast). As
can be seen, at lower density the worst-case stress

8A final version of this paper, will include results for larger
group sizes.

drops sharply. For example, at 2,048 nodes the worst
case stress drops from 169 (for TS1000) to 37 (for
TS10000). Because, in practice, we do not expect very
high densities of group member nodes relative to the
Internet topology itself, worst-case stress using CAN-
based multicast should be at a reasonable level. In fu-
ture work, we intend looking into techniques that might
further lower this stress value.

5 Related Work

The case for application-level multicast as a more
tractable alternative to a network-level multicast service
was first put forth in [4, 3, 1].

The End-system multicast [4] work proposes an ar-
chitecture for multicast over small and sparse groups.
End-system multicast builds a mesh structure across
participating end-hosts and then constructs source-
rooted trees by running a routing protocol over this
mesh. The authors also study the fundamental per-
formance penalty associated with such an application-
level model.

The authors in [1] argue for infrastructure support to
tackle the problem of content distribution over the In-
ternet. The Scattercast architecture relies on proxies de-
ployed within the network infrastructure. These proxies
self-organize into an application-level mesh over which
a global routing algorithm is used to construct distribu-
tion trees.

In terms of being a solution to application-level mul-
ticast, the key difference between our work and the
End-System multicast and Scattercast work is the po-
tential for CAN-based multicast to scale to large group
sizes.

Yoid [3] proposes a solution to application-level mul-
ticast wherein a spanning tree is directly constructed
across the participating nodes without first constructing
a mesh structure as with Scattercast and End-system
multicast. The resultant protocols are more complex
because the tree-first approach results in expensive loop
detection and avoidance techniques and must be made
resilient to partitions.

Tapestry [15] is a wide-area overlay routing and lo-
cation infrastructure. Tapestry is similar to CANs in
terms of functionality but has significant differences in
terms of design. The high level similarity in designs
is that both CAN and Tapestry rely on an embedding
of nodes in a virtual address space. A node’s neigh-
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bors within this virtual space are selected 9 such that
the overall network is structured in some well-defined
manner.

Bayeux [16] is a source-specific, application-level
multicast scheme that leverages the Tapestry routing in-
frastructure. To join a multicast session, Bayeux nodes
send JOIN messages to the source node. The source
replies to a JOIN request by routing a TREE message,
on the Tapestry overlay, to the requesting node. This
TREE message is used to set up state at intermediate
nodes along the path from the source node to the new
member. Similarly, a LEAVE message from an exist-
ing member triggers a PRUNE message from the root,
which removes the appropriate forwarding state along
the distribution tree. Bayeux and CAN-based multi-
cast are similar in that they achieve scalability by lever-
aging the scalable routing infrastructure provided by
systems like CAN and Tapestry. In terms of service
model, Bayeux fundamentally supports only source-
specific multicast while CAN-based multicast allows
any group member to act as a traffic source. In terms of
design, Bayeux uses an explicit protocol to set-up and
tear down a distribution tree from the source node to
the current set of receiver nodes. CAN-based multicast
by contrast, fully exploits the CAN structure because
of which messages can be forwarded without requir-
ing a routing protocol to explicitly construct distribu-
tion trees.

Overcast[6] is a scheme for source-specific, reliable

9The details of this virtual space and how neighbor relations are
defined, set-up and maintained in CAN and Tapestry are however,
quite different

multicast using an overlay network. The Overcast sys-
tem is used to populate caches and create server replicas
from which end-user clients can retrieve content. Over-
cast uses a tree construction and teardown protocol for
the construction of efficient dissemination trees rooted
at the single source of traffic. The overlay network in
Overcast is composed of nodes that reside within the
network infrastructure. This assumption of the exis-
tence of permanent storage within the network distin-
guishes Overcast from CANs and indeed, from most of
the other systems described above. Unlike Overcast,
CANs can be composed entirely from end-user ma-
chines with no form of central authority. Also, CAN-
based multicast supports multiple traffic sources while
Overcast is fundamentally single-sourced.

6 Conclusion

Content-Addressable Networks have the potential to
serve as an infrastructure that is useful across a range
of applications. In this paper, we present and evalu-
ate a scheme that extends the basic CAN framework to
support application-level multicast delivery. There are,
we believe, two key benefits to CAN-based multicast:
the potential to scale to large groups without restricting
the service model and the simplicity of the scheme un-
der the assumption of the deployment of a distributed
infrastructure such as a Content-Addressable Network.

Our CAN-based multicast scheme is optimal in terms
of the distance (in terms of path length) in flooding
messages over the CAN overlay structure itself. In
future work, we intend looking into simple clustering
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techniques to further reduce the link stress caused by
our flooding algorithm and understanding what the fun-
damental limitations there are. A number of important
questions such as security, loss recovery, and conges-
tion control remain to be addressed in the context of
CAN-based multicast.
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