
Building Low-Diameter P2P Networks

Gopal Pandurangan
�

Prabhakar Raghavan
�

Eli Upfal
�

Abstract

In a peer-to-peer (P2P) network, nodes connect into an
existing network and participate in providing and avail-
ing of services. There is no dichotomy between a central
server and distributed clients. Current P2P networks (e.g.,
Gnutella) are constructed by participants following their
own un-coordinated (and often whimsical) protocols; they
consequently suffer from frequent network overload and
fragmentation into disconnected pieces separated by choke-
points with inadequate bandwidth.

In this paper we propose a simple scheme for partici-
pants to build P2P networks in a distributed fashion, and
prove that it results in connected networks of constant de-
gree and logarithmic diameter. It does so with no global
knowledge of all the nodes in the network. In the most com-
mon P2P application to date (search), these properties are
important.

1. Overview

Peer-to-peer (or “P2P”) networks are emerging as a
significant vehicle for providing distributed services (e.g.,
search, content integration and administration) both on the
Internet [4, 5, 6, 7] and in enterprises. The idea is simple:
rather than have a centralized service (say, for search), each
node in a distributed network maintains its own index and
search service. Queries no longer go to a central server; in-
stead they fan out over the network, and results are collected
and propagated back to the originating node. This allows
for search results that are fresh (in the extreme, admitting
dynamic content assembled from a transaction database, re-
flecting – say in a marketplace – real-time pricing and in-
ventory information). Such freshness is not possible with
traditional static indices, where the indexed content is as

�
Computer Science Department, Brown Univer-

sity, Box 1910, Providence, RI 02912-1910, USA.
E-mail: � gopal, eli � @cs.brown.edu. Supported in part by
the Air Force and the Defense Advanced Research Projects Agency of the
Department of Defense under grant No. F30602-00-2-0599, and by NSF
grant CCR-9731477.�

Verity Inc., 892 Ross Drive, Sunnyvale, CA 94089.

old as the last crawl (in many enterprises, this can be several
weeks). The downside, of course, is dramatically increased
network traffic. In some implementations [5] this problem
can be mitigated by adaptive distributed caching for repli-
cating content; it seems inevitable that such caching will
become more widespread.

How should the topology of P2P networks be con-
structed? Each node participating in a P2P network runs
so-called servent software (for server+client, since every
node is both a server and a client). This software embeds
local heuristics by which the node decides, on joining the
network, which neighbors to connect to. Note that an in-
coming node (or for that matter, any node in the network)
does not have global knowledge of the current topology, or
even the identities (IP addresses) of other nodes in the cur-
rent network. Thus one cannot require an incoming node to
connect (say) to “four random network nodes” (in the hope
of creating an expander). What local heuristics will lead to
the formation of networks that perform well? Indeed, what
properties should the network have in order for performance
to be good? In the Gnutella world [7] there is little consen-
sus on this topic, as the variety of servent implementations
(each with its own peculiar connection heuristics) grows –
along with little understanding of the evolution of the net-
work. Indeed, some services on the Internet [8] attempt to
bring order to this chaotic evolution of P2P networks, but
without necessarily using rigorous approaches (or tangible
success).

A number of attempts are under way to create P2P net-
works within enterprises (e.g., Verity is creating a P2P en-
terprise infrastructure for search). The principal advantage
here is that servents can be implemented to a standard, so
that their local behavior results in good global properties
for the P2P network they create. In this paper we begin with
some desiderata for such good global properties, principally
the diameter of the resulting network (the motivation for this
becomes clear below). Our main contribution is a stochas-
tic analysis of a simple local heuristic which, if followed by
every servent, results in provably strong guarantees on net-
work diameter and other properties. Our heuristic is intu-
itive and practical enough that it could be used in enterprise
P2P products.



1.1. Case study: Gnutella

To better understand the setting, modeling and objec-
tives for the stochastic analysis to follow, we now give an
overview of the Gnutella network. This is a public P2P net-
work on the Internet, by which anyone can share, search for
and retrieve files and content. A participant first downloads
one of the available (free) implementations of the search
servent. The participant may choose to make some docu-
ments (say, all his FOCS papers) available for public shar-
ing, and indexes the contents of these documents and runs
a search server on the index. His servent joins the network
by connecting to a small number (typically 3-5) of neigh-
bors currently connected to the network. When any ser-
vent � wishes to search the network with some query � , it
sends � to its neighbors. These neighbors return any of their
own documents that match the query; they also propagate �
to their neighbors, and so on. To control network traffic
this fanning-out typically continues to some fixed radius (in
Gnutella, typically 7); matching results are fanned back into
� along the paths on which � flowed outwards. Thus every
node can initiate, propagate and serve query results; clearly
it is important that the content being searched for be within
the search radius of � . A servent typically stays connected
for some time, then drops out of the network – many par-
ticipating machines are personal computers on dialup con-
nections. The importance of maintaining connectivity and
small network diameter has been demonstrated in a recent
performance study of the public Gnutella network [8].

Note that the above discussion lacks any mention of
which 3-5 neighbors a servent joining the network should
connect to; and indeed, this is the current free-for-all sit-
uation in which each servent implementation uses its own
heuristic. Most begin my connecting to a generic set of
neighbors that come with the download, then switch (in
subsequent sessions) to a subset of the nodes whose names
the servent encountered on a previous session (in the course
of remaining connected and propagating queries, a servent
gets to “watch” the names of other hosts that may be con-
nected and initiating or servicing queries). Note also that
there is no standard on what a node should do if its neigh-
bors drop out of the network (many nodes join through di-
alup connections, and typically dial out after a few minutes
– so the set of participants keeps changing).

1.2. Guided tour of the paper

Our main contribution is a new protocol by which newly
arriving servents decide which network nodes to connect
to, and existing servents decide when and how to replace
lost connections. We show that our protocol results in a
constant degree network that is likely to stay connected and
have small diameter.

Our protocol for building a P2P network is summarized
in Section 2. Sections 3 and 4 present a stochastic analysis
of our protocol. Our protocol involves one somewhat non-
intuitive notion, by which nodes maintain “preferred con-
nections” to other nodes; in Section 5 we show that this fea-
ture is essential. Our analysis considers a stochastic setting
in which nodes arrive and leave the network according to
a probabilistic model. Our goal is to show that even as the
network changes with these arrivals/departures, it remains
connected with small diameter.

The technical core of our analysis is an analysis of an
evolving graph as nodes arrive and leave, with edges being
dictated by the protocol; the analysis of evolving graphs is
relatively new, with virtually no prior analysis in which both
nodes and edges arrive and leave the network.

2. The Network Protocol

The central element of our protocol is a host server
which, at all times, maintains a cache of � nodes, where
� is a constant. The host server is reachable by all nodes at
all times; however, it need not know of the topology of the
network at any time, or even the identities of all nodes cur-
rently on the network. We only expect that (1) when the host
server is contacted on its IP address it responds, and (2) any
node on the P2P network can send messages to its neigh-
bors. In this sense, our protocol demands far less from the
network than do (for instance) current P2P proposals (e.g.,
the reflectors of dss.clip2.com, which maintain knowledge
of the global topology).

When a node is in the cache we refer to it as a cache
node. A node is new when it joins the network, otherwise
is is old. Our protocol will ensure that the degree (number
of neighbors) of all nodes will be in the interval � �����
	��� ,
for two constants � and � .

A new node first contacts the host server, which gives it
� random nodes from the current cache to connect to. The
new node connects to these, and becomes a d-node; it re-
mains a d-node until it subsequently either enters the cache
or leaves the network. The degree of a d-node is always
� . At some point the protocol may put a d-node into the
cache. It stays in the cache until it acquires a total of � con-
nections, at which point it leaves the cache, as a c-node. A
c-node might lose connections after it leaves the cache, but
its degree is always at least � . A c-node has always one
preferred connection, made precise below. Our protocol is
summarized below as a set of rules applicable to various
situations that a node may find itself in.

Peer-to-Peer Protocol for Node � :

1. On joining the network: Connect to � cache nodes,
chosen uniformly at random from the current cache.

2



2. Reconnect rule: If a neighbor of � leaves the network,
and that connection was not a preferred connection,
connect to a random node in cache with probability
������� ��� , where ��� �	� is the degree of � before losing
the neighbor.

3. Cache Replacement rule: When � reaches degree �
in the cache, it is replaced in the cache by a d-node
from the network. Let 
��� ����� � , and let 
���� ��� be the
node replaced by 
�������� ��� in the cache. The replace-
ment d-node is found by the following rule:

� ��� ;
while (a d-node is not found) do

search neighbors of 
���� ��� for a d-node;� � � 	 � ;
endwhile

4. Preferred Node rule: When � leaves the cache as a
c-node it maintains a preferred connection to the d-
node that replaced it in the cache. (If � is not already
connected to that node this adds another connection to
� .)

5. Preferred Reconnect rule: If � is a � -node and its pre-
ferred connection is lost, then � reconnects to a random
node in the cache and this becomes its new preferred
connection.

We end this section with brief remarks on the protocol and
its implementation.

1. In the stochastic analysis that follows, the protocol
does have a minuscule probability of catastrophic fail-
ure: for instance, in the cache replacement step, there
is a very small probability that no replacement d-node
is found. A practical implementation of this step would
either cause some nodes to exceed the maximum ca-
pacity of � 	 � connections, or to reject new connec-
tions. In either case, the system would speedily “self-
correct” itself out of this situation (failing to do so with
an even more minuscule probability). For either such
implementation choice, our analysis can be extended.

2. Note that the overhead in implementing each rule of
the protocol is constant (or expected constant). Rules
1, 2, 4 and 5 can be easily implemented with constant
overhead. It follows from our analysis that the over-
head incurred in replacing a full cache node (rule 3)
is constant on the average, and with high probability
is at most logarithmic in the size of the network (see
Section 3.2).

3. The cache replacement rule can be implemented in a
distributed fashion by a local message passing scheme
with constant storage per node. Each c-node � stores

the address of the node that replaced it in the cache,
i.e., 
	� ��� . Node � sends a message to 
	� ��� when �
itself doesn’t have any d-node neighbors.

4. We have not stated how a node determines whether a
neighbor is down. In practice, each node can period-
ically ping its neighbors to check whether any of its
neighbors have gone offline.

3. Analysis

In evaluating the performance of our protocol we focus
on the long term behavior of the system in a fully decen-
tralized environment in which nodes arrive and depart in an
uncoordinated, and unpredictable fashion. This setting is
best modeled by a stochastic, memoryless, continuous-time
setting. The arrival of new nodes is modeled by Poisson
distribution with rate � , and the duration of time a node
stays connected to the network has an exponential distribu-
tion with parameter � . Let ��� be the network at time  ( � �
has no vertices). We analyze the evolution in time of the
stochastic process !"�#�$� � � �&% � .

Since the evolution of ! depends only on the ratio �'���
we can assume w.l.o.g. that �(� � . To demonstrate the
relation between these parameters and the network size, we
use )*�+�'��� throughout the analysis. We justify this no-
tation in the next section by showing that the number of
nodes in the network rapidly converges to ) . Furthermore,
if the ratio between arrival and departure rates is changed
later to )-,��.��,/���0, , the network size will then rapidly con-
verge to the new value )", . Next we show that the protocol
can w.h.p.1 maintain a bounded number of neighbors for all
nodes in the network, i.e., w.h.p. there is a d-node in the
network to replace a cache node that reaches full capacity.
In Section 3.3 we analyze the connectivity of the network,
and in Section 4 we bound the network diameter.

3.1. Network Size

Let � � �1�32 � �54 � � be the network at time  .

Theorem 3.1 1. For any  6�879�3)"� , w.h.p. : 2��;:"�< �$)=� .
2. If

�>@?BA then w.h.p. : 2 � :C��) 	ED	�$)"� .

Proof: Consider a node that arrived at time F.GH . The
probability that the node is still in the network at time  isI �KJ � �'L�M$N > . Let OP�3 Q� be the probability that a random node
that arrives during the interval � � �5  is still in the network at

1Throughout this extended abstract w.h.p. denotes probability RTSU�V�W�XZY3[
.

3



time  , then (since in a Poisson process the arrival time of a
random element is uniform in � � �5  ),

OP�3 Q� � �
 

� �
�
I �PJ � ��L M$N > �CF � �

 ) � ��� I � � N > ���
Our process is similar to an infinite server Poisson queue.

Thus, the number of nodes in the graph at time  has a Pois-
son distribution with expectation  OP�$ Q� (see [10],pages 18–
19).

For  � 79�$)=� , 4 �Z: 2��;:  � < �$)=� . When  Q� ) ? A ,
4 �Z: 2 � : ��.) 	ED	�3)"� .

We can now use a tail bound for the Poisson distribu-
tion [1] [page 239] to show that for  � 79�$)"� ,� 
�� : : 2 � :	�=4 �Z: 2 � :  :G�
 � )����� )���� ��� ��� )��
for some ��� � . �

The above theorem assumed that the ratio ) � ����� was
fixed during the interval � � �5  . We can derive similar result
for the case in which the ratio changes to )", � ��,/���0, at
time F .

Theorem 3.2 Suppose that the ratio between arrival and
departure rates in the network changed at time F from )
to ) , . Suppose that there were � nodes in the network at
time F , then if � ��L>�� ? A w.h.p. �9� has )-, 	ED	�$) ,/� nodes.

Proof: The expected number of nodes in the network at
time  is

� I ��� �"!�#�$% � 	E) , � ��� I � �"!�#% � � � ) , 	 �&�'�=) , � I � �"!�#% � �
Applying the tail bound for the Poisson distribution we

prove that w.h.p. the number of nodes in � � is )-, 	 D	�3) , � .�
3.2. Available Node Capacity

To show that the network can maintain a bounded num-
ber of connections at each node we will show that w.h.p
there is always a d-node in the network to replace a cache
node that reaches capacity � , and that the replacement node
can be found efficiently. We first show that at any given time
 the network has w.h.p. a large number of d-nodes.

Lemma 3.1 Let �(�*) � ; then at any time  +�*,-���� ) ,
(for some fixed constant ,+� � ), w.h.p. there are

� ��� ) �
�.� � �0/21�3 �  �5) 

d-nodes in the network.

Proof: Assume that  4�1) (the proof for  65() is simi-
lar). Consider the interval �  7� )��   ; we bound the number
of new d-nodes arriving during this interval and the number
of nodes that become c-nodes.

The arrival of new nodes to the network is Poisson-
distributed with rate 1; using the tail bound for the Poisson
distribution we show that w.h.p the number of new d-nodes
arriving during this interval is )E� � 	(D	� ���Q� , and that the
number of connections to cache nodes from the new arrivals
is � ) � � 	 D	� ���5� .

W.h.p. there were never more than ) � � 	�D	� ���Q� nodes
in the network at any time in this interval. Thus, the num-
ber of nodes leaving the network in this interval is Poisson-
distributed with expectation G1) � � 	 D	� ���Q� and w.h.p. no
more than ) � � 	 D	� ���5� nodes left the network in the inter-
val. The expected number of connections to the cache from
old nodes is bounded by

) � � 	 D	� ���Q�98:<;>= ��� ���) �
��� ��� � ) � � � 	ED	� ���Q�?�

Let @0� �A�B��� �C@ED be the set of nodes that left the network in
that interval, and let F :<G H<I � � if � makes connection to the
cache when @KJ left the network, else F :<G HLI ��� . Then

4NMO D8PCQ � 8 : F :<G H ISRT � ) � � � 	 D	� ���Q�
and each variable in the sum is independent of all but �
other variables. By partitioning the sum into � sums such
that in each sum all variables are independent, and apply-
ing the Chernoff bound ([9]) to each sum individually, we
can show that w.h.p. the total number of connections to the
cache from old nodes during this interval is bounded w.h.p
by ) � � � 	ED	� ���Q���

Since a node receives �U� � connections while in the
cache, w.h.p. no more than VXWY � W ) d-nodes convert to new
c-nodes in the interval; thus w.h.p we are left with � �2�VXWY � W � ) d-nodes that joined the network in this interval.�
Lemma 3.2 Suppose that the cache is occupied at time  
by node � . Let Z � ��� be the set of nodes that occupied the
cache during the interval �  0� �K���� )��   . For any [\� � and
sufficiently large constant � , w.h.p. : Z � �	�;: is in the rangeV�W �J Y � W M^] B�_� ) � �a`b[C�
Proof: As in the proof of Lemma 3.1, the expected num-
ber of connections to a given cache node in an interval
�  7�"�K���� )��5  is V�W �dc eCf >] . Applying a Chernoff bound we
show that w.h.p. the number of connection is in the rangeVXW �] �����) � �7`g[C� . Since a cache node receives �h� � con-
nections while in the cache the result follows. �

4



The following lemma shows with that in most cases the
algorithm finds a replacement node for the cache by search-
ing only a few � �^B�_� )"� nodes.

Lemma 3.3 Assume that � � � �N) . At any time  ��
�KB�_� ) , with probability ����� � c eXf � >> � the algorithm finds
a replacement d-node by examining only � �^B�_� )"� nodes.

Proof: Let ��� � ���B� � ��] be the � nodes in the cache at time
 . With probability

� I ����� �	�
� %% � ����� � ���� V )

) �

no node in Z � � J � , 
 � � �A�B� � � leaves the network in the
interval �  7�=�K���� )��5  .

Suppose that node � leaves the cache at time  , then the
protocol tries to replace � by a d-node neighbor of a node inZ � �	� . As in the proof of Lemma 3.1 w.h.p. Z � �	� received at
least V�W] �KB�_� ) connections from new d-nodes in the inter-
val �  ���K���� )��5  . Among these new d-nodes no more than
: Z � ��� : nodes enter the cache and became c-nodes during
this interval. Using the bound on : Z � �	�;: from Lemma 3.2,
w.h.p. there is a � -node attached to a node of Z � �	� at time
 . �
3.3. Connectivity

The proof that at any given time the network is connected
w.h.p. is based on two properties of the protocol: (1) Steps
3-4 of the protocol guarantee (deterministically) that at any
given time a node is connected through “preferred connec-
tions” to a cache node; (2) The random choices of new con-
nections guarantee that w.h.p. the � �^B�_� )"� neighborhoods
of any two cache nodes are connected to each other. In Sec-
tion 5 we show that the first component is essential for con-
nectivity. Without it, there is a constant probability that the
graph has a number of small disconnected components.

Lemma 3.4 At all times, each node in the network is con-
nected to some cache node directly or through a path in the
network.

Proof: It suffices to prove the claim for c-nodes since a
d-node is always connected to some c-node. A c-node � is
either in the cache, or it is connected through its preferred
connection to a node that was in the cache after � left the
cache. By induction, the path of preferred connections must
lead to a node that is currently in the cache. �
Lemma 3.5 Consider two cache nodes � and @ at time  a�
�KB�_� ) , for some fixed constant ��� � . With probability � �
� � c eCf � >> � there is a path in the network at time  connecting
� and @ .

Proof: Let Z � ��� be the set of nodes that occupied the
cache during the interval �  ����K���� )��   . By Lemma 3.2,
w.h.p. : Z � �	�;:�� � ���� ) , for some constant � .

The probability that no node in Z � �	� leaves the network
during the interval �  7�=�K���� ) �5  is

I � ���� ��� � %% � ����� � B�_� V )
) �?�

Note that if no node in Z � ��� leaves the network during this
interval then all nodes in Z � ��� are connected to � by their
chain of preferred connections.

The probability that no new node that arrives during the
interval �  � �KB�_� )��5  connects to both �C� ��� and � �^@�� is
bounded by � �4� � V � � V � �dc eXf > ��� � ��� ) � � � . �
Since there are � ��� � ��� cache locations we prove:

Theorem 3.3 There is a constant � such that at any given
time  a� �K���� ) ,

� 
	�$� � is connected �a� ����� � ���� V )
) �?�

The above theorem does not depend on the state of the
network at time  � �K���� ) . It therefore shows that the
network rapidly recovers from fragmentation.

Corollary 3.1 There is a constant � such that if the network
is disconnected at time  ,

� 
	�$� ��� ��c eCf > is connected �a� ����� � ���� V )
) �?�

Theorem 3.4 At any given time  such that  Q� ) ? A , if
the graph is not connected then it has a connected compo-
nent of size ) � ���=D	� ���5� .
Proof: By Lemma 3.4 all nodes in the network are con-
nected to some cache node. The � � c eCf � >> � failure probabil-
ity in Theorem 3.3 is the probability that some cache node is
left with fewer than � ���� ) nodes connected to it. Exclud-
ing such cache nodes all other cache nodes are connected to
each either with probability �6� � V � � �
� V � � V � �dc eXf > �
��� ����) � , for some ��� � . �
4. Diameter

Theorem 4.1 For any  , such that  Q� ) ? A , w.h.p. the
largest connected component of � � has diameter � �^B�_� )"� .
In particular, if the network is connected (which has proba-
bility ����� � c eCf � >> � ) then w.h.p. its diameter is � �"���� )=� .

We give a sketch of the proof, emphasizing the important
steps. Since a d-node is always connected to a c-node it is

5



sufficient to discuss the distance between c-nodes. Thus, in
the following discussion all nodes are c-nodes. For the pur-
poses of the proof we fix a constant � , and color the edges
using three colors: � , � � and �2) . All edges are colored A
except: When a cache node leaves the cache, if during its
time in the cache it receives a set of 
2��� connections such
that

� The 
 connections are from old nodes.

� The 
 connections are not preferred connections.

� The 
 connections resulted from 
 different nodes leav-
ing the network.

A random � of these 
 connections are re-colored; a random
half of these to � � , the rest to �2) .

It is easy to verify, following the proof of Theorem 3.3,
that at any time  , the network is connected with probabil-
ity � ��� � c eXf � >> � using only the � edges, and that if the
network is not connected then w.h.p. the � edges define a
connected component of size ) � ���=D	� ���5� .

We rely on the “random” structure of the � edges to re-
duce the diameter of the network. However, we need to
overcome two technical difficulties. First, although the �
edges are “random”, the occurrences of edges between pairs
of nodes are not independent as in the standard ��� G � model
of random graphs ([3]). Second, the total number of �
edges is relatively small; thus the proof needs to use both
the � and the � edges.

Lemma 4.1 Assume that node � enters the cache at time
 , where  Q� ) ? A . For a sufficiently large choice of the
constant � , the probability that � leaves the cache with � re-
colored edges is at least � � ����) , and the � connections are
distributed uniformly at random among the nodes currently
in the network. Furthermore, these events are independent
for different c-nodes.

Proof: Consider the interval of time in which � was a
cache node. New nodes join the network according to a
Poisson process with rate 1. The expected number of con-
nections to � from a new node is � � � .

Since there are ) � � 	=D	� ���Q� nodes in the network at that
time, and nodes leave the network according to a Poisson
process with rate 1, the expected number of connections to
� as a result of a old node leaving the network is

8H_;>= ���"@0�) �
���"@0� �� � �

� � � 	ED	� ���Q��5 ���
Thus, each connection to � , while it is in the cache, has a

constant probability each of being from a new or a old node.
Also, when a old node @ leaves the network, the expected
number of connections to � from @ is 	 J H M> W	 J H M � � � ) , i.e.,

all old nodes have equal probabilities of being connected to
� .

Since the expected number of connections to � as a result
of one old node leaving the network is G � , for sufficiently
large � , the � � � connections to � include, with probabil-
ity ��� ����) , 
\��� connections that satisfy the requirement
for � edges. �

Given a node � in � � , let 
0� � ��� be an arbitrary cluster of
� ���� ) c-nodes, such that ���
K� � ��� , and this cluster has
diameter � �"���� )=� using only � edges.

For 
 � � , 
 odd (resp., even) let 
9J5� �	� be all the c-
nodes in � � that are connected to 
7J$���C� ��� and are not in� J/�0�PCQ � 
 P � ��� using � � (resp., �\) ) edges.

Lemma 4.2 If : 
7J$����� �	�;:�� D	�$)"� , then with probability � �
��� )��

: 
 JQ� �	�;:>� )�: 
 J$��� � ��� : �
Proof: Let � ��
 J$��� � ��� , � � : � : , and let ����� � � � J/�0�PCQ � 
 P � ���Q� . W.l.o.g. assume that 
 � � is even. Par-
tition � into � � , consisting of nodes in � that are older
than � , and � � , consisting of nodes in � that arrived af-
ter � . The probability that � is connected to �"� using � �
edges is ������ �����> � ���=D	� ���5� . Similarly, each node in � � has
probability �� > � ���.D	� ���5� of being connected to � by � �
edges. Thus, the probability that � is connected to � is at
least �V �! > � ��� D	� ���5� .

Let " � : 
7JQ� �	�;: be the number of c-nodes outside �
that are connected to � by � � edges. 4 � "  � � � � � �\�
D	� ���Q� . Let �T� �#� V � �����B� be an enumeration of the nodes in� , and let ) �$� J&� be the set of neighbors of � J outside �
using � � edges. Define an exposure martingale Z � �?Z � � ���B��� ,
such that Z � � 4 � "  , Z J � 4 � " :�) �$� � � � �����B� �5) �%� J �  ,Z  �&" . Since the degree of all nodes is bounded by � , a
node � J can connect to no more than � nodes outside � .
Thus, : Z J �bZ J$��� :05 � .

Using Azuma’s inequality [2] we prove that for suffi-
ciently large constant � ,�(' : " � 4 � "  :>� � )+* �

� � * �-, G ) I �/. �0��2143 �  G ����) � ��
To complete the proof of the theorem, consider two

nodes � and @ . By applying the above lemma � �"�����)"�
times we prove that with probability � � � � c eCf >>65 � , for some� : � � H ��� �^B�_� )"� , : 
 �87 � ��� : � * )�B�_� ) and : 
 �89 �"@0� :>�* ) B�_� ) . The probability that 
 �87 � �	� and 
 �89 �"@0� are
disjoint and not connected by an edge is bounded by � � �
�0�	)C) � > c eCf � > , thus with probability �-� � � c eCf >> 5 � an arbi-
trary pair of nodes @ and � are connected by a path of length
� �"�����)"� in �9� . Summing the failure probability over all: � V ; pairs we prove that w.h.p. any pair of nodes in � � is
connected by a path of length � �^B�_� )"� .

6



5. Why Preferred Connections?

In this section we show that the preferred connection
component in our protocol is essential: running the pro-
tocol without it leads to the formation of many small dis-
connected components. A similar argument would work for
other fully decentralized protocols that maintain a minimum
and maximum node degree and treat all edges equally, i.e.,
do not have preferred connections. Observe that a protocol
cannot replace all the lost connections of nodes with degree
higher than the minimum degree. Indeed, if all lost connec-
tions are replaced and new nodes add new connections, then
the total number of connections in the network is monoton-
ically increasing while the number of nodes is stable, thus
the network cannot maintain a maximum degree bound.

To analyze our protocol without preferred nodes define a
type � subgraph as a complete bipartite network between
� d-nodes and � c-nodes, as shown in Figure 1.

Lemma 5.1 At any time  �B� , where � is a sufficiently
large fixed constant, there is a constant probability (i.e. in-
dependent of ) ) that there exists a subgraph of type � in
�9� .
Proof: A subgraph of type � arises when � incoming
d-nodes choose the same set of � nodes in cache. A type
� subgraph is present in the network at time  when all the
following four events happen:

1. There is a set � of � nodes in the cache each having
degree � (i.e., these are the new nodes in the cache
and are yet to accept connections) at time  7� � .

2. There are no deletions in the network during the inter-
val �  7� � �5  .

3. A set � of � new nodes arrive in the network during
the interval �  7� ���   .

4. All the incoming nodes of set � choose to connect to
the � cache nodes in set � .

Since each of the above events can happen with constant
probability, the lemma follows. �
Lemma 5.2 Consider the network � � , for  ��.) . There is
a constant probability that there exists a small (i.e., constant
size) isolated component.

Proof: By Lemma 5.1 with constant probability there is a
subgraph (call it � ) of type � in the network at time  -�
) . We calculate the probability that the above subgraph �
becomes an isolated component in ��� . This will happen if
all ) � nodes in � survive till  and all the neighbors of the
nodes in � (at most � � � � ��� of them connected to the �

d-nodes

c-nodes

Figure 1. Subgraph � used in proof of lemma
5.2. Note that � ��� in this example. All the
four d-nodes are connected to the same set
of four c-nodes (shown in black).

c-nodes) leave the network and there are no re-connections.
The probability that the ) � subgraph nodes survived the
interval �  A��)��   is I � VXW . The probability that all neighbors
of the subgraph leave the network with no new connections
is at least � � � I � � Y J Y � W M � � � WW � � � Y J Y � W M . Thus, the
probability that � becomes isolated is at least

I � VXW � � � I � � Y J Y � W M � ��� �
� 	 � �

Y J Y � W M � < � ���
�

Theorem 5.1 The expected number of small isolated com-
ponents in the network at any time  \�+) is 79�3)"� , when
there are no preferred connections.

Proof: Let � be the set of nodes which arrived during the
interval �  � )��  7� > V  . Let � ��� be a node which arrived
at at  , . From the proof of Lemma 5.2 it is easy to show that
� has a constant probability of belonging to a subgraph of
type � at  , . Also, by the same lemma, � has a constant
probability of being isolated at  . Let the indicator variableF : , � ��� denote the probability that � belongs to a iso-
lated subgraph at time  . Then, 4 �	� :<;�
 F : -�179�$)"� , by
linearity of expectation. Since the isolated subgraph is of
constant size, the theorem follows. �
References

[1] N. Alon and J. Spencer. The Probabilistic Method,
John Wiley, 1992.

[2] K. Azuma. Weighted sums of certain dependent ran-
dom variables. Tohoku Mathematical Journal, 19,
357-367, 1967.

7



[3] B. Bollobas. Random Graphs, Academic Press, 1985.

[4] D. Clark. Face-to-Face with Peer-to-Peer Networking,
Computer, 34(1), 2001.

[5] I. Clarke. A Distributed Decentralized Information
Storage and Retrieval System, Unpublished report,
Division of Informatics, University of Edinburgh
(1999).

[6] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong.
Freenet: A distributed anonymous information storage
and retrieval system, In Proceedings of the Workshop
on Design Issues in Anonymity and Unobservability,
Berkeley, 2000. (http://freenet.sourceforge.net)

[7] Gnutella website. http://gnutella.wego.com/

[8] Gnutella: To the Bandwidth Barrier and Beyond,
http://dss.clip2.com/gnutella.html

[9] R. Motwani and P. Raghavan. Randomized Algo-
rithms, Cambridge University Press, 1995.

[10] S.M. Ross. Applied Probability Models with Opti-
mization Applications, Holden-Day, San Francisco,
1970.

8


