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One Ring to rule them all. One Ring to find them. One Ring to bring

them all. And in the darkness bind them. J.R.R. Tolkien

Abstract

Self-organizing, structured peer-to-peer (p2p) overlay
networks like CAN, Chord, Pastry and Tapestry offer a
novel platform for a variety of scalable and decentralized
distributed applications. These systems provide efficient
and fault-tolerant routing, object location, and load bal-
ancing within a self-organizing overlay network.

One major problem with these systems is how to boot-
strap them. How do you decide which overlay to join?
How do you find a contact node in the overlay to join?
How do you obtain the code that you should run? Cur-
rent systems require that each node that participates in a
given overlay supports the same set of applications, and
that these applications are pre-installed on each node.

In this position paper, we sketch the design of an infras-
tructure that uses a universal overlay to provide a scalable
infrastructure to bootstrap multiple service overlays pro-
viding different functionality. It provides mechanisms to
advertise services and to discover services, contact nodes,
and service code.

1. Introduction

Recent systems such as CAN [11], Chord [15], Kadem-
lia [8], Pastry [12] and Tapestry [17] provide a self-
organizing structured peer-to-peer (p2p) overlay network
that can serve as a substrate for large-scale peer-to-peer
applications. One of the abstractions that these systems
can provide is a scalable, fault-tolerant distributed hash
table (DHT), in which any item can be located within a
bounded number of routing hops, using a small per-node
routing table.

In these systems a live node in the overlay to each key
and provide primitives to send a message to a key. Mes-
sages are routed to the live node that is currently responsi-
ble for the destination key. Keys are chosen from a large
space and each node is assigned an identifier (nodeId) cho-
sen from the same space. Each node maintains a routing
table with nodeIds and IP addresses of other nodes. The
protocols use these routing tables to assign keys to live
nodes. For instance, in Pastry, a key is assigned to the live
node with nodeId numerically closest to the key.

In the simplest case, DHTs can be used to store key-
value pairs much like centralized hash tables. Lookup
and insert operations can be performed in a small number
of routing hops. The overlay network is completely self-
organizing, and each node maintains only a small routing
table with size constant or logarithmic in the number of
participating nodes. Structured p2p overlays can be used
as a platform for a variety of distributed services, includ-
ing archival stores [7, 3, 13], content distribution [6] and
application-level multicast [18, 2, 14].

Service advertisement, discovery and binding are com-
mon problems in distributed systems [10, 16, 9]. Service
advertisement and discovery mechanisms allow a user to
deploy and find services of interest, and binding provides
the user with the code necessary to install the service on
a node. These problems are compounded in p2p overlays
because the service is run by a large number of diverse,
distributed peers. Furthermore, binding is harder for a p2p
service because a joining peer is required to know a con-
tact node already in the overlay.

Current p2p overlays do not provide a good solution
to these problems. They require that each node supports
the same set of applications, and that these applications
are pre-installed on each node. Additionally, they do not
provide a scalable solution to find a contact node to join an
overlay.

In this position paper, we sketch the design of an in-



frastructure that uses a universal p2p overlay to provide
scalable mechanisms to bootstrap multiple service over-
lays providing different functionality. It provides mech-
anisms to advertise and discover services, contact nodes,
and service code.

In the following description, we will use Pastry as an
example structured p2p overlay protocol. It should be
noted that the ideas and concepts apply equally to other
protocols like Chord, CAN and Tapestry.

2. Pastry overview

In Pastry, keys and nodeIds are 128 bits in length and
can be thought of as a sequence of digits in base 16. Pastry
routes a message to the node whose nodeId is numerically
closest to the key, in a circular nodeId space, which we call
a ring.

Each node maintains both a leaf set and a routing ta-
ble. The leaf set contains the immediate

�
clockwise

and counter-clockwise neighboring nodes in the circular
nodeId space. A node’s routing table is organized into ���
rows and ��� columns. The ��� entries in row � of the rout-
ing table refer to nodes whose nodeIds share the first �
digits with the present node’s nodeId; the �
	�� th nodeId
digit of a node in column � of row � equals � . The col-
umn in row � corresponding to the value of the �	�� ’s
digits of the local node’s nodeId remains empty. NodeIds
are chosen randomly with uniform probability from the set
of 128-bit strings. As a result, only ����������� rows are pop-
ulated in a node’s routing table on average, if there are �
nodes participating in the overlay. Figure 1 depicts an ex-
ample routing table.

In a normal routing step, a Pastry node forwards the
message to a node whose nodeId shares with the key a pre-
fix that is at least one digit longer than the prefix that the
key shares with the present node’s id. If no such node is
known, the message is forwarded to a node whose nodeId
shares a prefix with the key as long as the current node,
but is numerically closer to the key than the present node’s
id. Such a node must exist in the leaf set, unless all of
the members in one half of the leaf set have failed concur-
rently. Given that nodes with adjacent nodeIds are highly
unlikely to suffer correlated failures, the probability of this
event can be made very small even for modest values of

�
.

The expected number of routing hops is only ����������� . Fig-
ure 2 shows an example.

Each service is assigned a unique service id. When a
node determines that it is numerically closest to the key
(using the leaf set), it delivers the message to the local ser-
vice whose service id matches that contained in the mes-
sage. Moreover, the service is notified on each intermedi-
ate node that a message encounters along its route. Ser-
vices use this to perform dynamic caching, to construct

multicast trees, etc.
Pastry is fully self-organizing. A node join protocol

ensures that a new node can initialize its leaf set and rout-
ing table, and restore all system invariants by exchanging
O(log N) messages. In the event of a node failure, the in-
variants can likewise be restored by exchanging O(log N)
messages. Like all other p2p overlays, Pastry requires a
contact node already in the overlay to bootstrap the join
protocol.

Pastry constructs the overlay network in a manner that
is aware of the proximity between nodes in the underlying
Internet. As a result, one can show that Pastry achieves an
average delay penalty, i.e., the total delay experienced by
a Pastry message relative to the delay between source and
destination in the Internet, of only about two [1].

3. The universal ring

Our infrastructure for service discovery and binding re-
lies on a universal ring, which is an overlay that all partic-
ipating nodes are expected to join. The universal ring only
provides services to bootstrap other services. Other ser-
vices typically form separate overlays, which are created
dynamically. The nodes in the service specific overlays are
a subset of the nodes in the universal ring. The universal
ring enables peers to advertise and discover services of in-
terest, to find the code they need to run to participate in
a particular service overlay, and to find a contact node to
join the service overlay.

3.1. Joining the universal ring

To join the universal ring, each node needs to obtain
a nodeId that is assigned by some element of a set of
trusted authorities, e.g., ICANN or a certification authority
like Verisign. The certification authority assigns a random
nodeId to the node and signs a nodeId certificate that binds
the nodeId with a public key for a bounded amount of time.
The node knows the private key that corresponds to this
public key to authenticate itself to other nodes in the over-
lay. The certification authority should charge nodes for the
certificates it issues to make it more difficult for an attacker
to control many virtual nodes in the universal ring [4].

After obtaining a nodeId certificate, a joining node
needs to obtain the address of a contact node in the univer-
sal ring. If a large fraction of the nodes in the Internet are
in the universal ring, one can use brute-force, distributed
techniques to find a contact node. For example, expand-
ing ring IP multicast or other forms of controlled flooding
will work well because they will find a contact node within
a few hops of the joining node. Otherwise, servers with
well-known domain names can be used, which provide a
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Figure 1. Routing table of a Pas-
try node with nodeId ����� ��� , ���
	 .
Digits are in base 16, � represents
an arbitrary suffix.

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

O 2128 - 1

Figure 2. Routing a message from
node ����� ���� with key ��	 ��� ��� . The
dots depict live nodes in Pastry’s
circular namespace.

randomly chosen contact node upon request. These tech-
niques do not work well to find contact nodes for individ-
ual service overlays, which will likely be smaller and nu-
merous. We describe a service that provides contact nodes
for service overlays in Section 3.5.

3.2. Universal ring services

There are three basic services that the universal ring
must provide to facilitate service advertisement, discovery
and binding.

3.2.1 Persistent store

The first service is a persistent store for key-file pairs that
provides efficient access to files given their keys. This ser-
vice is used to store information about services, the code
needed to run them, and lists of contact nodes for the dif-
ferent services. All stored files are immutable except con-
tact lists, which do not require strong consistency seman-
tics.

The functionality provided by the persistent store is
similar to the one offered by PAST [13]. All files stored
in the universal ring must be signed using a private key
associated with a valid nodeId certificate.

A key-file pair is inserted in the store by using Pastry
to route to the node in the universal ring whose nodeId is
the numerically closest to the key. This node verifies the
signature in the file and then replicates the file over the
� numerically closest nodes in the ring to provide fault-
tolerance against node failures.

The lookup of a file given a key also involves routing

a lookup request to the node in the universal ring whose
nodeId is the numerically closest to the key. The node
performing the lookup then receives a copy of the signed
file, which it can verify.

Most files stored in the persistent store are small and
can be aggressively cached. Both on insertion and lookup
these files are cached on all nodes that participate in the
routing. This caching (which was also used in PAST) is
important to avoid overloading nodes when there are flash
crowds; it prevents the nodes responsible for storing a file
associated with a service from being overloaded if the pop-
ularity of the service increases dramatically in a short pe-
riod of time. Code files can be large and in this case it
might make sense to cache them less aggressively.

3.2.2 Multicast

The second basic service is an application-level multicast
service, called Scribe [2, 14]. Nodes wishing to subscribe
to a multicast group route a request to the node whose
nodeId is numerically closest to the multicast groupId,
called the group’s root. Each node along the path of the
request implicitly subscribes to the group, and adopts the
previous node along the route as a child in the group’s mul-
ticast tree. The request terminates when it arrives at the
root, or at a node that is already subscribed to the group.
Because membership management is distributed, the sys-
tem is highly scalable.

A message is multicast to the group by sending it to the
root. The root then forwards the message to all its children,
and so on. When a topology-aware protocol like Pastry or
Tapestry is used as the underlying p2p overlay, the result-



ing multicast trees have the property that nodes in succes-
sively smaller subtrees are increasingly near each other in
the Internet. As a result, the multicast is very efficient,
both with respect to delay and link stress [2].

Moreover, using a simple and efficient search algo-
rithm, any node in the universal ring can efficiently locate a
nearby member of a given group. To find such a member,
a message is routed towards the group’s root. When the
message reaches a subscriber, it returns its list of children.
The client then contacts the nearest among these children
(determined, for instance, by measuring the RTT to each
child). This process continues until a a leaf in the multi-
cast tree is reached. If the multicast tree was constructed
in a topologically aware fashion, then that node is likely
to be among the members that are nearest to the client is-
suing the search. Accuracy of this search can be traded
for even higher efficiency by contacting a random child
in each step; this works particularly well when members
exist that are very close to the client.

The nearby subscriber search can be used to discover a
nearby node in the network with a given property. Nodes
with a given property subscribe to a group associated with
the property. It can be used, for instance, to efficiently
locate nearby nodes with certain hardware capabilities or
services, nodes that have spare capacity, nodes that pro-
vide a specific service, or nodes that are operated by an
organization trusted by the user.

3.2.3 Distributed search

The third basic service is a distributed search engine that
allows users to find services given textual queries. Given
a set of keywords and a service key, it associates the key-
words with the specified key. The search engine allows
nodes to search for keys using a set of query keywords. In
the simple case, a boolean AND query is supported. More
complex queries and ranking of query results are possible
but details are beyond the scope of this paper.

We now briefly outline how the indexing could work.
There are currently several projects looking at the devel-
opment of searching and indexing for DHTs [5]. Here
we describe a very simple scheme that can be significantly
improved. The searching can be achieved by using a dis-
tributed inverted index that associates a keyword with a list
of service keys. Every node in the universal ring stores part
of the inverted index. The index for a keyword is stored in
the node whose nodeId is numerically closest to the hash
of the key. For resilience to node failure, the index on each
node is replicated over the � numerically closest nodes in
the ring. When a search is performed, the keywords in
the query are hashed and Pastry is used to access the cor-
responding indices. If a keyword has an inverted index
entry, the associated set of service keys is returned. The

node can then take the intersection of all the sets of keys
returned. The intersection represents that set of services
that satisfy the query. We plan to cache results of popular
queries in the path to their component keywords to prevent
overloads under flash crowds as was done in the persistent
store.

Persistent queries (also called triggers) can be imple-
mented as follows. A node that issues a persistent query
subscribes to a Scribe multicast group associated with each
keyword that appears in the query. When a service is ad-
vertised, a notification is sent on the multicast groups asso-
ciated with each of the service’s keywords. The receivers
intersect the notifications received on each group to which
they subscribe according to the query. As an optimiza-
tion, boolean AND queries can be handled by subscribing
to a group associated with the conjunction of query key-
words in a canonical form. The root of such a group in
turn subscribes to the groups associated with each of the
conjunctive term’s keywords and intersects notifications in
the obvious way.

In the following sections, we describe in more detail
how the persistent store, the multicast service and the
search engine are used to enable discovery of services,
code, and contact nodes.

3.3. Service advertisement and discovery

A service is created by generating a service certificate
that describes the service. This certificate includes the tex-
tual name of the service, a textual description of the ser-
vice, and a set of code keys (which are described in the
next section). Each code key identifies a different imple-
mentation that provides the functionality required to run
the service. The service certificate is signed by the private
key associated with the nodeId certificate of its creator.

To advertise a service, the creator uses the persistent
store provided by the universal ring to store the service
certificate reliably under a service key, which is equal to
the hash of the certificate. The textual description of the
service and the service name are then inserted by the cre-
ator into the indices of the search engine provided by the
universal ring. This associates the keywords with the ser-
vice key.

In order for a node to retrieve the service certificate, it
must discover the service key. This is performed by key-
word searching using the search engine provided by the
universal ring. A user performs a keyword search to re-
trieve a set of service keys, and then these service keys can
be used to retrieve their associated service certificates from
the persistent store provided by the universal ring. Alter-
natively, a node interested in certain categories of new ser-
vices can issue a persistent query in the search engine, in
order to be notified when new services of interest are ad-



vertised.

3.4. Code binding and update

As discussed above, we allow the creator of a service
to specify several acceptable implementations for the ser-
vice. These implementations are not necessarily written
by the service creator and they may be used by many ser-
vices that provide similar functionality. Therefore, code is
stored separately from service certificates.

Each implementation has a code certificate that in-
cludes the implementation name, a textual description of
the code, and the actual code1. The certificate is signed
by the code writer using the private key associated with its
nodeId certificate in the universal ring. This signature al-
lows users to verify that the code was written by the code
writer, which is important because the user may be unwill-
ing to run a piece of code just because the service creator
vouched that it was suitable for its service.

The code key associated with the code certificate is ob-
tained by hashing its contents. The persistent store pro-
vided by the universal ring is used to store the code certifi-
cate reliably under its code key.

After obtaining a service certificate, a node selects a
code key, and then retrieves the code certificate associated
with that key from the persistent storage service running
on the universal ring.

Software updates for an implementation are inserted
into the persistent store. The new code keys are then ad-
vertised on a multicast group consisting either of all mem-
bers of the associated service overlay, or all nodes that use
previous versions of the given implementation.

3.5. Joining a service overlay

After obtaining the service certificate and the code for
a service of interest, a node is almost ready to join the
service overlay. But first it needs to obtain the address of
a contact node in the service overlay. We describe how to
find this node next.

For each service, a small list of contact nodes is in-
serted in the universal ring under the service key. A node
that wants to join the overlay of the service obtains this
list when it looks up the service certificate in the universal
ring. Then, it selects one of the nodes in the list at random
to be its contact node.

To ensure that the contact list remains fresh, the oldest
element in the list is replaced by the joining node. Copies
of the contact list can be cached in the universal ring path

1Potentially other fields could be added to code certificate, such as a
documentation URL, version number, code dependency information and
so forth.

to the node that stores the service key to prevent overload-
ing this node. Additionally, each cached copy of the list
can be updated independently, as described above, to en-
sure its freshness and to prevent overloading of the contact
nodes.

P2p overlays like Pastry [12] and Tapestry [17] exploit
network locality to provide better performance. They re-
quire that the contact node be close to the joining node in
the underlying network topology in order to achieve this.
However, because of the randomization of nodeIds it is
highly likely that the contact node is not close to the join-
ing node. This problem can be solved by performing a
nearest subscriber search on a multicast group consisting
of the service overlay’s current members.

Alternatively, in Pastry, the problem can be solved by
using the algorithm described in [1]. This algorithm uses
the contact node and traverses the service overlay routing
tables bottom up to find a good approximation to the ser-
vice overlay node that is closest to the joining node in the
network. A similar algorithm could be used with Tapestry.
Once the closest node has been found, it is used to start the
joining algorithm described in [1].

4. Conclusions

In this position paper, we have outlined a preliminary
design of an infrastructure that provides service advertise-
ment, discovery and binding to bootstrap services based
on structured p2p overlays. This problem has not been ad-
dressed by previous work.

We have proposed the use of a universal ring that pro-
vides only bootstrap functionality while each service runs
in a separate p2p overlay. The universal ring provides: an
indexing service that enables users to find services of inter-
est by supplying boolean queries; a multicast service used
to distribute software updates and for coordination among
members of a service overlay; a persistent store and distri-
bution network that allows users to obtain the code needed
to participate in a service’s overlay; and a service to pro-
vide users with a contact node to join a service overlay.
These services are self-organizing and fault-tolerant and
scale to large numbers of nodes.

The solution we have proposed, whilst targeted at Pas-
try, is applicable to other protocols such as CAN, Chord
and Tapestry. It is also applicable to service discovery and
binding for traditional centralized services.
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