
Query Processing Over Peer-To-Peer Data
Sharing Systems

O. D. Şahin A. Gupta D. Agrawal A. El Abbadi
Department of Computer Science

University of California at Santa Barbara�
odsahin, abhishek, agrawal, amr � @cs.ucsb.edu

Abstract Peer-to-peer systems are mainly used for object sharing currently,
but they can provide the infrastructure for many other applications. In this paper,
we extend the idea of object sharing to data sharing on a peer-to-peer system.
We propose a method, which is based on the CAN [9] system, for efficiently
evaluating range queries on such a system. The answers of the range queries are
cached at the peers and then they are used to answer further range queries. The
scalability and efficiency of our design is shown through simulation.

Keywords: Peer-to-peer Systems, Distributed Systems, Distributed Databases,
Range Queries, Distributed Hashing.

1 Introduction

Peer-to-peer systems have been increasing in popularity in recent years as they
are used by millions of users as they allow the exchange of massive amounts of
data over the Internet. These systems are generally used for file sharing, such
as Napster [8] and Gnutella [1], which allow users to share their files with other
users. There are two challenges to be resolved for sharing objects on a peer-to-
peer system:

� Data Location: Given the name of an object, locate the corresponding ob-
ject.

� Routing: Once the possible location of the object is found, how to route the
query to that location.

Napster uses a centralized design to resolve these issues. A central server
maintains the index for all objects in the system. New peers joining the system

1

register themselves with the server. Every peer in the system knows the identity
of the central server while the server keeps information about all the nodes and
objects in the system. Whenever a peer wants to lookup an object, it sends the
request (name of the object) to the central server which returns the IP addresses of
the peers storing this object. The requesting peer then uses IP routing to pass the
request to one of the returned peers and downloads the object directly from that
peer. There are several shortcomings of the centralized design of Napster. First
of all, it is not scalable since the central server needs to store information about
all the peers and objects in the system. Second, it is not fault tolerant because the
central server is the single point of failure.

A different approach is followed by Gnutella to get around the problem of
centralized design. There is no centralized server in the system. Each peer in the
Gnutella network knows only about its neighbors. A flooding model is used for
both locating an object and routing the request through the peer network. Peers
flood their requests to their neighbors and these requests are flooded for a certain
threshold. The problems associated with this design are the high overhead on the
network as a result of flooding and the possibility of missing some requests even
if the requested objects are in the system.

These designs, including Napster, Gnutella, and some other variants are re-
ferred to as unstructured peer-to-peer systems [4, 7], because the data placement
and network construction are done randomly in these systems. Another group of
peer-to-peer designs are referred to as structured peer-to-peer systems and include
systems such as CAN [9], and Chord [10]. These systems are based on implement-
ing a distributed data structure called Distributed Hash Table (DHT) [9, 10, 11]
which supports a hash-table like interface for storing and retrieving objects.

CAN [9] uses a d-dimensional virtual address space for data location and rout-
ing. Each peer in the system owns a zone of the virtual space and stores the objects
that are mapped into its zone. Each peer stores routing information about O(d)
other peers, which is independent of the number of peers, � , in the system. Each
object is mapped to a point in d-dimensional space and then the request is routed
toward the mapped point in the virtual space. Each peer on the path passes the re-
quest to one of its neighbors which is closer to the destination in the virtual space.
The average routing path has ����������	�

� hops which is the lookup time for exact
match queries. Chord [10] assigns unique identifiers to both objects and peers in
the system. Given the key of an object, it uses these identifiers to determine the
peer responsible for storing that object. Each peer keeps routing information about
������������� other peers, and resolves all lookups via ������������� messages, where N
is the number of peers in the system.

Since peer-to-peer systems have emerged as a powerful paradigm for data
sharing over the Internet, a natural question arises if the power of peer-to-peer
systems can be harnessed to support database functionality over peer-to-peer sys-

2

tems. Indeed, several research initiatives are underway to answer this question.
For example, Gribble et al. [2] in their position paper titled “What can peer-to-
peer do for databases, and vice versa?” outline some of the complexities that
need to be addressed before peer-to-peer systems can be exploited for database
query processing. Similarly, in a recent paper Harren et al. [5] explore the issue
of supporting complex queries in DHT-based peer-to-peer systems. Harren et al.
report the implementation of database operations over CAN by performing a hash
join of two relations using DHT. The underlying technique basically exploits the
exact-name lookup functionality of peer-to-peer systems.

The work reported in this paper has similar goals as that of Harren et al., in
that we are interested in supporting database query processing over peer-to-peer
systems. Most data-sharing approaches designed for peer-to-peer systems are
concerned with exact lookup of data associated with a particular keyword. Our
contention is that in order to achieve the larger goal of data-sharing in the context
of a DBMS over peer-to-peer systems, we need to extend the current peer-to-peer
designs that only support exact name lookups to range searches. Range searches
or range selection is one of the fundamental functionality that is needed to support
general purpose database query processing. The main motivation for this is that
the selection operation is typically involved at the leaves of a database query
plan and hence is a fundamental operation to retrieve data from the database. As-
suming that such data partitions of a relation are extensively replicated at the peers
due to prior queries, we would like to retrieve the data from the peer-to-peer sys-
tem instead of fetching it from the base relation at the data source. In this paper
we propose to extend peer-to-peer systems to support more general queries on po-
tentially more complex and more structured datasets. Unlike previous approaches
for the design of distributed databases, our approach aims to support the man-
agement of loosely synchronized datasets that support more general queries in a
peer-to-peer environment. Unfortunately, DHTs were designed for exact match
queries. In this paper, we will extend the idea of object sharing to data sharing
and propose a method for efficiently answering range queries on a peer-to-peer
data sharing system. Our general long term goal is to support the various types of
complex queries used by DBMSs so that general peer-to-peer data support can be
a reality.

The rest of the paper is organized as follows: Section 2 formulates the prob-
lem. Section 3 introduces the basic concepts of our design, which is explained in
detail in Section 4. The experimental results are presented in section 5. The last
section concludes the paper and discusses future work.

3

2 Problem Formulation

Current peer-to-peer systems focus on object sharing and use object names for
lookup. Our goal, on the other hand, is to design a general purpose peer-to-
peer data sharing system. We consider a database with multiple relations whose
schema is globally known to all peers in the system. The peers cooperate with
each other to facilitate the retrieval and storage of datasets. A straightforward
extension and application of object naming is to use the relation name to locate
the data in the system. However, such an approach will result in large amounts
of data being stored redundantly and often unnecessarily throughout the network.
A more desirable approach is to use peers to store the answers of the previous
queries. Whenever a new query is issued, the peers are searched to determine if
the query can be answered from the prior cached answers. This is similar to the
known database problem often referred to as Answering Queries using Views [6].
Since the problem of answering queries using views is computationally hard even
in centralized systems, we will instead focus at a restricted version by extending
the exact lookup functionality of peer-to-peer systems to the range lookup of a
given dataset. Hence, our goal is to develop techniques that will enable efficient
evaluation of range queries over range partitions that are distributed (and perhaps
replicated) over the peers in a peer-to-peer system.

We assume that initially the database is located at a known site, or a known set
of sites. All queries can be directed to this database. However, such a centralized
approach is prone to overloading. Furthermore, the location of the data may be
quite remote in the peer-to-peer network, and hence response time may be slow.
Our goal is for the peers to cooperatively store range partitions of the database,
which are later used to respond to user queries. Of course the challenge is how
to track down where the various data range partitions are located. A straight-
forward approach would be to maintain a centralized index structure such as an
interval tree that has the global knowledge about the locations of range partitions
distributed over the network. However, such an approach would violate the key
requirement of peer-to-peer systems, which is to ensure that the implementation
is scalable, decentralized, and fault-tolerant.

Typically when an SQL query is formulated, a query plan is designed in the
form of a query tree. A common optimization technique is to push the selection
operations down to the leaves of the tree to minimize the data that has to be re-
trieved from the DBMS. A similar approach is used here to minimize the amount
of data retrieved from other peers for range queries. Rather than retrieving all
possible tuples from the actual database for each range query, the answers stored
at the peers are searched to find a smaller set of tuples that is a superset of the
query.

For example, if the answer of a range query ���������
	�� for a given attribute is

4

stored at a peer, then future queries such as � � 	 � � �
� can be answered using the
result of � � �����
	 � . Since the range � ��� ���
	 � subsumes the range ��� 	 ��� �
� , it is
enough to examine the tuples in the result of � ����� �
	 � , without any data retrieval
from the database. In this way, less tuples are checked to compute the answer and
all the tuples to be examined are retrieved directly from a single peer. This also
decreases the load on the database since it is not accessed for every query.

The problem can now be stated as follows:

Problem. Given a relation
�

, and a range attribute � , we assume that the results
of prior range-selection queries of the form

��� � ��� ��� �
	���
�	 � are stored
at the peers. When a query is issued at a peer which requires the retrieval of
tuples from

�
in the range

��� � ������� ��������� � , we want to locate any peers in
the system which already store tuples that can be accessed to compute the
answer.

In order to adhere to the peer-to-peer design methodology, the proposed solution
for range lookup should also be based on distributed hashing. A nice property of
DHT-based approach is that the only knowledge that peers need is the function
that is used for hashing. Once this function is known to a peer, given a lookup
request the peer needs to compute the hash value locally and uses it to route the
request to a peer that is likely to contain the answer. Given this design goal, a naive
approach would be to use a linear hash function over the range query schema, i.e.,
a linear hash function over � ��� , ������� , or both ����� and ������� . A simple analysis
reveals that such a hash function will only enable exact matches of given range
requests. However we are also interested in the results of the range queries that
may contain the given range, i.e., the ranges that are a superset for the given query
range lookup. In the following sections we develop a DHT approach that enables
range lookups that are not exact matches. In [3], we use locality preserving hash
functions for range lookups that are based on similarity and hence provide approx-
imate answers to range queries. In this paper, however, our technique ensures that
a range lookup will always yield a range partition that is a superset of the query
range, if one exists.

3 System Model

Our system is based on CAN [9] and uses a 2d virtual space in a similar manner.
Given the domain ��� ���
� of a one dimensional attribute, the corresponding virtual
hash space is a two dimensional square bounded by the coordinates ��� �
� � , ��� �
� � ,
��� �
�
� , and ��� ��� � in the Cartesian coordinate space. Figure 1 shows the correspond-
ing virtual hash space for a range attribute whose domain is [20,80]. The corners
of the virtual space are � ����� ��� � , ��� ������� � , ��� ����� � � , and � �����
��� � .

5

80

 80

x

 y

 20

20

Figure 1: Virtual Range Lookup Space
for a range attribute with domain � �����
��� �

2
3

5

6

1

 (20,20) (80,20)

 (80,80) (20,80)

4 7

35

50

61

30 42

69

Figure 2: Partitioning of the virtual space
shown in Figure 1

The virtual hash space is further partitioned into rectangular areas, each of
which is called a zone. The whole virtual space is entirely covered by these zones
and no two zones overlap. A zone can be identified by a pair (� � � ��� � � � �

��� ��� � �)
where � � � ��� � � is the bottom left corner coordinate whereas � ��� ��� � � is the top
right corner coordinate. Figure 2 shows a possible partitioning of the virtual
space shown in Figure 1. The virtual space is partitioned into 7 zones : zone-1
� � ��� � ���
� � � � ����� 	 � � , zone-2 � � ��� � 	��
� � �	� � ��

� � � , zone-3 � ��� � � 	��
� � � � ����
��
� � , zone-
4 � � ������
�� � � � � ���
���
� � , zone-5 � � ������� 	 � � ��� ��� 	�� � � , zone-6 � �	� � ��
��
� � � �����
� �
� � , and
zone-7 � ��������
�� � � ��� � �
� �
� � .

Each zone is assigned to a peer in the system. Unlike original CAN, not all
the peer nodes in the system participate in the partitioning. Those that participate
are called the active nodes. Each active node owns a zone and stores the results of
the range queries whose range hashes into the zone owned by this node. The rest
of the peer nodes, which do not participate in the partitioning, are called passive
nodes.

For the purpose of routing requests in the system, each active node keeps a
routing table with the IP addresses and zone coordinates of its neighbors, which
are the owners of adjacent zones in the virtual hash space. In Figure 2, the routing
table of the owner of zone-2 contains information about its four neighbors: zone-5,
zone-3, zone-7 and zone-4.

Given a range query with range �	��� ����� � , it is hashed to point ����� ����� � in the
virtual hash space. This point is referred to as the target point. The target point is
used to determine where to store the answer of a range query as well as where to
initiate range lookups when searching for the result of a range query. The zone in
which the target point lies and the node that owns this zone are called the target
zone and the target node, respectively. The answer of each range query is stored

6

at the target node of this range. For example, according to Figure 2, the range
query � 	�����
 �
� is hashed into zone-3, so the set of tuples that form the answer to
this query would be stored at the node that owns zone-3.

Since the start point and end point of a range is hashed to � and � coordinates
respectively, the � coordinate of the target point is always greater than or equal to
the � coordinate. Hence , the target point never lies below ��� � line. Given two
ranges � �

� ��� � �
� � � , and ��� � ��� � ��� � � that are hashed to target points
�
� and

� � in
the virtual hash space, the following observations can be made:

1. If � � � � � , then the � coordinate of
�
� is smaller than the � coordinate of

� �
and hence

�
� lies to the left of

� � in the virtual space.

2. If � � � � � , then the � coordinate of
�
� is smaller than the � coordinate of

� �
and hence

�
� lies below

� � in the virtual space.

3.
�
� lies to the upper-left of

� � if and only if range � � contains range ��� .

The third result can be concluded from the fact that by moving along the negative
� direction in the virtual hash space decreases the start point of the corresponding
range while by moving along the positive � direction increases the end point.

(x,y)

A

B

D

C

Figure 3: Range Hashing

Figure 3 shows a range query � � ����� that is hashed into zone � . Using the
above observations, we can assert that if there is any prior range query result that
contains � � ����� , then it must have been hashed to a point in the shaded region.
Any zone that intersects the shaded region is therefore a candidate for potentially
containing a result for this query. In the figure, the zones � ��� �	� , and
 inter-
sect with the shaded region and may have a result that contains the given range

7

� � ����� . Zone
 is of particular interest since it is guaranteed to store results that
completely contain the answer to the desired range � � ����� .
Diagonal Zone. Consider a zone � bounded by coordinates � � � � ��� � � � �

��� ��� � � � .
We say that another zone �

�
bounded by � ��� � �
� � � � � � � �
� � � � is a diagonal

zone of � if � ��� �
� and � � � � � .

Intuitively, �
�
is diagonally above the upper-left corner of � . For example,
 is a

diagonal zone of � in Figure 3. If we require that zones cannot exist unless they
are non-empty (i.e., store at least one range selection), then a diagonal zone of a
zone � can answer all range queries that are hashed into � .

We now estimate the average routing distance for processing range queries in
the proposed model. Let us assume that the 2d virtual hash space is partitioned
into � equal sized zones. If � ���

�
, then each axis is divided into � equal sized

parts. Every path from a zone to another zone constitutes of steps in � and �
directions (see Figure 4, the path is shown as a dotted line).

l x

l y

1

2

m

1 2 m

Figure 4: A Path in 2d virtual hash space divided into equal sized zones

In Figure 4, �	� is the number of steps in � direction and ��
 is the number of
steps in � direction. Then the total path length � � ���
� ��
 . The shortest possible
path length is � and the longest path length is ����� � , which is ��� � steps in
either direction. Now, we will compute how many ways a path of length � can
be generated. When � � � , � � �	� � � and ��
 � ��� ��� . A path of length �	� in
the � direction can be generated in ��� ��� ways, and a path of length ��
 in the �
direction can be generated in ��� ��� �	� ways. Hence the total number of ways in
which a path of length � can be generated when � � � is given by � � :

8

� � �
��

������� � � � � � � � � � � � ��� �

� � �

 �

�	�

 � � � � �

�
� � �

�
� � �

�
(1)

Therefore, the total number of paths whose length is less than � is:

 � � �
� ��
����� � �

� �
� � ��� �

�

� � � 	 ���
� � � 	����

� � (2)

And, the weighted sum of all path lengths less than � is:

 � � ��� ��
����� � �����

� � �� � �
�
�

� � �
���
� � �

���
� � � � ���
�� (3)

When � � � � ��� � � , we have �	� � � � � because that is the maximum distance
that can be traveled in any direction. Since ��
 � � � � , therefore, ��� � � � � � � .
Hence the total number of ways in which a path of length � can be generated when
� � � � ��� � � is given by � � :

� � � ��� ��
�������

���
� �
� � � ����� � � � � � �����

� �

 �

�	�

 �

�
� � �

�
� � � � �

�
� � ���

� (4)

The corresponding total number of paths and weighted sum are given by the fol-
lowing expressions:

 � �
�
���

��
���
�
� �

� � �� � �
�
�

� � �
���
� � �

���
� � (5)

� � � �
 � �
�
���

��
���
�
� �����

� �
� � �

�
�

� � �
���
� � �

���
� � �

���
��� (6)

9

The average path length � is therefore given by the weighted sum over all possible
path lengths divided by total number of paths:

� � � ��� ������ � � � � � �
�
���

����
�
� � � �

� �
� ������ � � � �
�
���

����
�
� �

�

 �
�
 �
 � �
 �

� �
� � � � ��� (7)

The average path length in an equally partitioned hash space is therefore ����� � � .

4 Distributed Range Hashing

In this section we describe the basic components that support the distributed im-
plementation of range hashing. We assume that there are a set of computing nodes
which participate in the distributed implementation of the range hash table(RHT).
For simplicity, we are assuming that the range hash table is based on a relation

�
for a specific range attribute � with range extent ������� ��������� � . If queries on other
attributes or relations also need to be supported, we assume a separate instance
of an appropriate RHT will be maintained. The nodes participating in the system
are in one of the two modes – active/passive. Initially, only one active node man-
ages the entire virtual hash space. Other nodes become active as the work load on
the active node increases. Next we describe how zones in the virtual hash space
are maintained on peers. Finally, we present the details of range query lookup
processing in the system.

4.1 Zone Maintenance

The partitioning of the virtual hash space into zones is at the core of both the data
location and routing algorithms. Initially the entire hash space is a single zone
and is assigned to one active node. The partitioning of the hash space is dynamic
and changes over time as the existing zones split and new zones are assigned to
passive nodes that become active and take responsibility for the new zone. A zone
splits when it has a high load: it may have too many results to store (storage load)
or it may get too many requests (processing load). The decision to split is made
by the owner of the zone. Whenever a zone is to be split, the owner node contacts
one of the passive nodes and assigns it a portion of its zone by transferring the
corresponding results and neighbor lists. The split line, along which the zone

10

Algorithm 1 Split a zone
find x-median and y-median of the stored results
determine if a split at x-median (parallel to y axis) or a split at y-median (paral-
lel to x axis) results in better partitioning of the space and then split along this
line
compute new coordinates of this zone and the new zone according to the split
line
assign the new zone to a passive node
for all results stored at this zone do

if the result is mapped to the new zone then
remove from this node and send to the new node

end if
end for
for all neighbors of this zone do

if it is a neighbor of the new zone then
add it to the neighbor list of new node

end if
if it is no longer a neighbor of this node then

remove from the neighbor list of this node
end if

end for
add new node to the neighbor list of this node
add this node to the neighbor list of new node

splits into two, is selected by the owner node in such a way that results in an even
distribution of the stored answers as well as an even distribution of the spatial
space of the zone. The outline of the split operation is shown in Algorithm 1.

Figure 5 shows the partitioned zones after zone-2 in Figure 2 splits parallel
to the y-axis. Figure 6 shows the resulting partition if zone-3 in Figure 5 splits
parallel to the x-axis. The splitting operation does not guarantee that the two
resulting zones will be equal in size or number of results, but it guarantees that
each of the two zones will have at least one result after the split. This is unlike the
original CAN design and we will show that it actually improves the performance.
To satisfy the assertion that each zone has at least one stored result, some pre-
computed results are stored initially in the system for the first zone.

4.2 Query Routing

When searching for the answer of a range query, the first place to look for cached
results is the target zone of this range. Therefore whenever a range query is issued,

11

3

5

6

1

 (20,20) (80,20)

 (80,80) (20,80)

4 7

82

Figure 5: Partitioning of the virtual hash
space after zone-2 of Figure 2 splits

5

6

1

 (20,20) (80,20)

 (80,80) (20,80)

4 7

82 3

9

Figure 6: Partitioning of the virtual hash
space after zone-3 of Figure 5 splits

it is routed toward its target zone through the virtual space. Starting from the
requesting zone, each zone passes the query to an adjacent zone until it reaches its
target zone. Using its neighbor lists and the target point of the query, each node
on the route passes the query to one of its neighbors whose coordinates are the
closest to the target point in the virtual space. Algorithm 2 presents an outline of
the routing algorithm.

Algorithm 2 Routing
if the query range maps to this zone then

return this zone
else

for all neighbors of this zone do
Compute the closest Euclidean distance from the target point of the query
to the zone of this neighbor in the virtual space
if this is the minimum distance so far then

keep a reference to this neighbor
end if

end for
Send the query to the neighbor with minimum distance from the target point
in virtual space

end if

A key step in Algorithm 2 is to choose which neighbor to forward the query.
A simple way to compute the distance of the target from a zone is to compute
the Euclidean distance between the target point and the center of the zone in the
virtual hash space. In this case, a zone would compute the Euclidean distance

12

between the centers of the neighboring zones and the target point and forward the
query to the neighbor with the least distance to the target. But as we show in the
following discussion, the query might not always converge to the target.

2

3

1

t
4

Figure 7: With distance measured from center of zones, queries may not converge

Figure 7 shows a portion of the virtual hash space that has been divided among
the four zones labeled � � � ��� and � . The labels of the zones denote the centers of
the corresponding zones. The point

�
marks the target point in the virtual hash

space and
�

lies in zone-1. The query originates in zone-4 and is forwarded to
zone-2 because the center of zone-2 is closer to the target

�
than that of zone-1.

Once the query is at zone-2, it chooses zone-3 among neighboring zones � ��� and
� because

�
is closest to center of zone-3. Next, zone-3 sends it back to zone-2

because between zones � and � , the target
�

is closer to the center of zone-2. And
the query keeps oscillating between zones � and � never reaching zone-1 to which�

belongs.

 R1

R2

R3 R4

R5 R6

R7 R8

Z

Figure 8: Measuring distance of a target point form a zone

13

The distance of target
�

from a zone � should be measured as the closest
distance of

�
from the entire zone. This is illustrated in Figure 8. The target point�

may lie in one of the eight regions labeled
� � � � � � � � � � � � . If

�
lies in region

� �
or

� � then the closest distance of
�

from the zone is its distance from the upper
or lower edge of the zone rectangle respectively. Similarly, if

�
lies in region

� �
or

� � then the closest distance is from the left or right edge of the zone rectangle
respectively. If the target

�
is in one of the regions

� 	 � �
�� � � or
� � , then the

closest distance of
�

from the zone is its distance from the closest vertex of the
zone rectangle. If

�
lies in the interior of the zone or on the zone boundary, then

its distance from the zone is � . Since the target
�

can lie in the interior of at most
one zone that zone will have the least distance from

�
and all other zones will have

a positive distance from
�
. Since, at each step of routing the query moves closer

to the target, it will converge. In case the target point is on an edge of a zone, then
the query corresponding to that point should be stored in both the zones sharing
that edge.

1 9

2

3

4 5

6 78

10

11

Figure 9: Routing and forwarding in the virtual hash space

Figure 9 shows how a query is routed in the system. The range query is ini-
tiated at zone-7 and then routed through zone-2 to its target zone, zone-10. The
range queries in the system can be initiated from any zone. Since passive nodes
do not participate in the partitioning, they send their queries to any of the active
nodes from where the queries are routed toward the target zone.

4.3 Forwarding

Once a query reaches the target zone, the stored results at this zone are checked to
see if there are any results whose range contains the query range. If such a result is
found, only this result is examined to construct the query answer. Even if there is

14

no such local result, it is still possible that some other zones in the system do have
such a result; so the search should be forwarded to other zones. Fortunately the
search space can be pruned at this point. As a result of the mapping scheme, only
the zones that lie to the upper left of the target point can have a result containing
the given range. So if the result is not found locally, the query is forwarded to
the left and top neighbors that may contain a potential result. Those nodes also
check their local results and may forward the query to some of their neighbors in
a recursive manner.

Figure 9 shows how a query can be forwarded in the system. If the range query
cannot be answered at its target zone, zone-10, then it is forwarded to zone-3 and
zone-5 which may have a result for the query. Note that forwarding is only used
if the query cannot be answered at the target zone.

Forwarding is similar to flooding and has to be stopped at some point. For this
purpose, a parameter called Forwarding Limit is used. Forwarding Limit is a real
value between � � � � � � � and used to determine how far the forwarding will go on.
If it is set to � � � , then only the target zone of the range query is checked and the
query is not forwarded to any neighbor. If, on the other hand, it is set to � � � , then
the query is forwarded to all zones that are likely to have a result for the query;
i.e., all the zones which have some point that lies on the upper left of the target
point of the query.

For a zone � � � � � � ��� � � � �
��� ��� � � � , every zone �

� � � � � � �
� � � � � � � �
� � � � is a
diagonal zone for � if and only if � � � �

� and � � � � � . In Figure 9, zone-8 and
zone-4 are the diagonal zones for zone-10. However zone-3 has no diagonal zone.
It is obvious that a zone cannot have a diagonal zone if it lies on the left or top
boundary of the virtual space. It is also possible that a zone may have no diagonal
zone even if it has many zones to the upper left of itself. Figure 10 shows such a
case where the zone-6 at the bottom right corner has no diagonal zones.

1

3

5

6

7

2
4

Figure 10: No Diagonal Zones

Diagonal zones are of particular interest since they are guaranteed to contain a

15

range including the desired answer set. This is the case because every point in the
diagonal zone contains the query range and every zone in the system has at least
one stored result. As the number of zones in the system increases, the possibility
of finding a diagonal zone for a zone also increases.

4.4 Discussion

An important routing improvement is Lookup During Routing. Since the request-
ing zone and the target can be at any position with respect to each other (they can
actually be the same zone), it is possible that a zone on the path from the request-
ing zone to the target zone may already have a result containing the query. The
system can be improved so that every zone on the route checks its local results
if it has a possible result. If the result is found, then the query is not routed any
further and the result is returned to the requesting node. This way, some routing
and forwarding can be avoided. The routing path decisions can be changed so that
the routed queries follow a path that may have zones with possible results. The
effect of Lookup During Routing on the system performance is shown in Section
5.3. Some of the improvements for CAN[9] are also applicable for our approach.
Multiple realities, better routing metrics, overloaded zone, topology-sensitive par-
titioning can be incorporated into the system.

Although our system is designed for answering range queries, it can also an-
swer exact queries. Exact match queries can be answered by setting the start and
end points of the range to the exact value and then querying the system with this
range. For example, in order to search for the tuples with range attribute A=20,
the system is queried for the range ��� ��� ���
� .

Updates of tuples can be incorporated into the system in the following manner.
When a tuple

�
with range attribute � � �

is updated, an update message is sent to
the target zone of the range � � � � � . Since tuple

�
is included in all the ranges � � �
� �

such that � � �
and � � �

, the update message is forwarded to all zones that lie on
the upper left of the target zone. Each zone receiving an update message, updates
the corresponding tuple in the local results accordingly. All zones that contain the
tuple

�
will receive the update message and hence will update the tuple value in

the stored data partition.

5 Experimental Results

We implemented a simulator in Java and then tested various aspects of our design.
In this section, we present the test results. All experiments were performed on a
Celeron MMX PC with 466MHz CPU and 132MBytes of main memory, running
Linux RedHat 7.3.

16

In the experiments, a zone splits when the number of stored results exceeds
a threshold value, which is called the split point. In the experiments, following
default values are used:

� The system is initially empty. (There is only one zone in the system)

� Split point is 5, i.e., at most 5 range partitions are maintained per peer.

� Range queries are distributed uniformly.

� Domain of the range attribute is ����� 	 � �
� .

5.1 System Performance

The performance of the system can be determined in terms of the ratio of range
queries that are answered using prior answers stored in the system. Figure 11
shows the percentage of the answered range queries as a function of the forward-
ing limit for three different sets of queries with sizes 100, 1000, and 10,000.

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

P
er

ce
nt

ag
e

of
 th

e
qu

er
ie

s
an

sw
er

ed

Forwarding limit

split=5, domain=0-500

100 queries
1000 queries

10000 queries

Figure 11: Effect of forwarding limit on the system performance

When the forwarding limit is zero, no forwarding is used and only the target
zone is checked for each query. In this case, nearly half of the queries are answered
and the performance improves slightly as the number of queries increases. When
forwarding is enabled (even if it is set to a small value such as 0.1), there is a great
improvement on the performance. With 100 queries, changing the forwarding
limit from 0 to 0.1 improves the performance from 47.6% to 75.5%, whereas the
performance changes from 57% to 99.2% under the same conditions with 10,000
queries.

17

If the forwarding limit is set to 1, then every zone that may have a possible
result for the query is searched and a stored result that contains the query range
is found if there exists any. When forwarding limit is set to 1 for 10,000 queries,
99.65% of the queries are answered using cached results.

We can make two important observations from Figure 11:

� The probability of finding answers to range queries improves as the for-
warding limit is increased. This is quite clear since increasing the forward-
ing limit results in the search of more candidate zones.

� The probability of finding answers to range queries improves as the number
of queries increases. As the number of queries is increased, more results
are stored in the system and the possibility of finding a result for a query
gets higher.

5.2 Routing Performance

The routing performance is measured in terms of the average number of zones
visited for answering a query. When the forwarding limit is 0, the result is the
average number of zones visited during routing. If forwarding is enabled, it also
includes the zones visited during forwarding in addition to those visited during
routing.

0

500

1000

1500

2000

2500

3000

3500

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F
in

al
 n

um
be

r
of

 z
on

es

Number of queries

domain=0-500

Split Point = 5
Split Point = 15
Split Point = 30

Figure 12: Number of final zones as a
function of split point

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 n
um

be
r

of
 z

on
es

 v
is

ite
d

pe
r

qu
er

y

Forwarding limit

split=5, domain=0-500

100 queries
1000 queries

10000 queries

Figure 13: Effect of forwarding limit on
the number of visited zones

Figure 12 shows that the final number of zones in the system increases linearly
with respect to the number of queries. In Figure 13, we vary the forwarding limit
and notice that the average path length is around 8 zones for 1000 queries and 21
for 10000 queries. Even though the final number of zones in the second case is 10
times that in the first case, the path length increase is less than 3 times.

18

In comparison to the reported performance of CAN [9], we note that the av-
erage number of hops is less using our approach because the system is initially
empty and so very few zones are visited for earlier queries. As more queries are
answered, the number of zones in the system increases as well as the number of
zones visited for the query. In Section 5.5 we examine the number of visited zones
when the system is not empty initially.

As seen from the Figure 13, changing the value of the forwarding limit in the
interval 0.1-1.0 does not change the result too much, so we can conclude that most
of the results are found in nearby neighbors during forwarding.

In the above discussion, the forwarding limit determined the portion of the en-
tire coordinate space that needs to be searched. In addition to the above mentioned
forwarding, we tried to restrict the number of zones visited during forwarding in a
manner where the forwarding limit determines the forwarding space in proportion
to the space in left and up of the target point in the coordinate space. Our experi-
ments with restricted forwarding had similar results as the normal forwarding.

5.3 Lookup During Forwarding

One of the improvements to the system is to implement Lookup During Routing
so that the results for the queries may be found while they are being routed to
their target zone. If a result for the query is found on its way to its target zone, the
query is not routed anymore which results in less number of visited zones. Figure
14 shows the number of visited zones per query when Lookup During Routing is
used. The percentage of the queries that are answered during routing is shown in
Figure 15.

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 n
um

be
r

of
 z

on
es

 v
is

ite
d

pe
r

qu
er

y

Forwarding limit

10000 queries, split=5, domain=0-500

without lookup-during-routing
with lookup-during-routing

Figure 14: Effect of Lookup During
Routing on the system performance

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

P
er

ce
nt

ag
e

of
 th

e
qu

er
ie

s
an

sw
er

ed
 d

ur
in

g
ro

ut
in

g
(%

)

Forwarding limit

10000 queries, split=5, domain=0-500

Figure 15: Percentage of the queries an-
swered during routing

19

5.4 Selectivity

Fig 16 shows the performance of the system when query ranges are restricted
to certain maximum lengths. The domain of the range attribute is changed to
0-10000 in order to avoid the repetitions of queries. In the figure, Selectivity
k% means that the length of any queried range is less than or equal to � ���
� ��� � � � � ��� � � � � where

� ��� � � � � � is the length of the domain and equals 10000
in this case. For example, with 0.1% selectivity, all query ranges have length less
than or equal to 10 since � � � � � � � � � � � � � � � � . 100% selectivity is the same as
no selectivity since the query ranges can have any possible length. When creat-
ing the range queries, the start points of the ranges are selected uniformly from
the domain of the range attribute and then the length of the range is determined
randomly according to the selectivity.

0

20

40

60

80

100

0 5 10 15 20 25

P
er

ce
nt

ag
e

of
 th

e
qu

er
ie

s
an

sw
er

ed

Selectivity (%)

10000 queries, split=5, domain=0-10000

Limit = 1.0
Limit = 0.0

Figure 16: Effect of selectivity on the system performance

As seen from the figure, the percentage of queries answered decreases as the
selectivity gets smaller. That is because restricting the query ranges to a smaller
length makes it harder to find prior results that contain a given range. When the
selectivity is small, a query is looking for a very specific range. All the prior
queries have also been quite specific. Hence the probability that the current query
intersects or is contained in one of the previous queries is low, which explains the
observed behavior.

5.5 Cold Start vs. Warm Start

Although in most of our experiments the system is initially empty, it is also useful
to test the performance and the path length when the system is not initially empty

20

but has some number of initial zones. This means that there are some results stored
in the system prior to answering queries and the number of these initial results is
proportional to the number of initial zones.

Figure 17 shows the performance of the system when there are different num-
ber of initial zones. It is seen from the figure that increasing the number of initial
zones in the system slightly increases the performance. On the other hand, the
average path length increases because now there are more zones in the system and
even the initial queries require many zone visits. Figure 18 shows the number of
visited zones per query when there are initial zones in the system.

0

20

40

60

80

100

0 200 400 600 800 1000

P
er

ce
nt

ag
e

of
 th

e
qu

er
ie

s
an

sw
er

ed

Number of existing zones

10000 queries, split=5, domain=0-500, forwarding limit=0.0

Figure 17: Effect of warm start on the
system performance

0

5

10

15

20

25

30

0 200 400 600 800 1000

A
ve

ra
ge

 n
um

be
r

of
 z

on
es

 v
is

ite
d

pe
r

qu
er

y

Number of existing zones

10000 queries, split=5, domain=0-500, forwarding limit=0.0

Figure 18: Effect of warm start on the
average path length

55

60

65

70

75

80

85

90

95

100

0 0.2 0.4 0.6 0.8 1

P
er

ce
nt

ag
e

of
 th

e
qu

er
ie

s
an

sw
er

ed

Forwarding limit

10000 queries, split=5, domain=0-500

Uniform
Zipf

Figure 19: Percentage of answered
queries for different distributions of the
range queries

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 n
um

be
r

of
 z

on
es

 v
is

ite
d

pe
r

qu
er

y

Forwarding limit

10000 queries, split=5, domain=0-500

Uniform
Zipf

Figure 20: Average number of hops
visited for different distributions of the
range queries

21

5.6 Uniform vs. Zipfian Query Distribution

We tested our approach using query sets that have a zipfian distribution. The query
set is created as follows: The start points of the ranges are selected according to
zipf distribution so that they are clustered near 0. After the start point of the query
is determined, the end point is selected uniformly from the remaining interval
(start point, 500] since 500 is the maximum possible value of the range attribute
in this case.

Figure 19 shows the performance for different distributions of the query ranges.
With zipfian distribution, the queries are mapped to a certain region (in our case,
they are mapped to points that are close to the � axis since the start points of the
ranges are usually close to 0) and there is a better chance of finding similar results
in the system. However the average number of visited zones is much greater when
the query ranges have a zipfian distribution rather than a uniform distribution as
shown in figure 20. When queries have a zipfian distribution, they are usually
hashed to certain portion of the virtual space and that portion is divided into many
small zones. Since further queries are also hashed to the same portion with a high
probability, the queries visit these small zones during routing and forwarding,
which results in a much greater path length.

6 Conclusions and Future Work

Peer-to-peer systems are gaining in importance as they distribute and connect
users and information that are distributed across the globe. The true distributed
systems of today need to facilitate this world wide retrieval and distribution of
data. So far most peer-to-peer attempts have been restricted to exact match lookups
and therefore are only suitable for file-based or object-based applications. This pa-
per represents a first step toward the support of a more diverse and richer set of
queries. Databases are a natural repository of data, and our enhanced CAN based
system supports the basic range (or selection-based) operation. Our approach is
simple and very promising. We have shown how to exploit the CAN approach
to support range queries and have demonstrated that it successfully scales using a
variety of performance studies. This paper represents a first step toward the design
of a complete peer-to-peer database system. In the short term, however, we plan
to explore extending our approach to support multi-attribute range queries as well
as non-integer based domains.

References

[1] Gnutella. http://gnutella.wego.com/.

22

[2] Steven Gribble, Alon Halevy, Zachary Ives, Maya Rodrig, and Dan Suciu.
What can peer-to-peer do for databases, and vice versa? In Proceedings
of the Fourth International Workshop on the Web and Databases (WebDB
2001), Santa Barbara, California, USA, May 2001.

[3] Abhishek Gupta, Divyakant Agrawal, and Amr El Abbadi. Approxi-
mate range selection queries in peer-to-peer systems. Technical Report
UCSB/CSD-2002-23, University of California at Santa Barbara, 2002.

[4] Matthew Harren, Joseph M. Hellerstein, Ryan Huebsch, Boon Than Loo,
Scott Shenker, and Ion Stoica. Complex queries in DHT-based peer-to-peer
networks. In Proceedings of the first International Workshop on Peer-to-Peer
Systems, 2002.

[5] Matthew Harren, Joseph M. Hellerstein, Ryan Huebsch, Boon Than Loo,
Scott Shenker, and Ion Stoica. Complex queries in DHT-based peer-to-peer
networks. In Proceedings of the first International Workshop on Peer-to-Peer
Systems, 2002.

[6] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivas-
tava. Answering queries using views (extended abstract). In Proceedings of
the fourteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, pages 95–104. ACM Press, 1995.

[7] Qin Lv, Sylvia Ratnasamy, and Scott Shenker. Can heterogeneity make
gnutella scalable? In Proceedings of the first International Workshop on
Peer-to-Peer Systems, 2002.

[8] Napster. http://www.napster.com/.

[9] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content-addressable network. In Proceedings of the
2001 conference on applications, technologies, architectures, and protocols
for computer communications, pages 161–172. ACM Press, 2001.

[10] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for internet ap-
plications. In Proceedings of the 2001 conference on applications, tech-
nologies, architectures, and protocols for computer communications, pages
149–160. ACM Press, 2001.

[11] Y. B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for
fault-tolerant wide-area location and routing. Technical Report UCB/CSD-
01-1141, University of California at Berkeley, 2001.

23

