Spline
Curves & Surfaces

Thomas Funkhouser
Princeton University
COS 526, Fall 2002

3D Object Representations

- Raw data
 - Voxels
 - Point cloud
 - Range image
 - Polygons

- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Octree
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Skeleton
 - Application specific
Curved Surfaces

• Motivation
 ◦ Exact boundary representation for some objects
 ◦ More concise representation than polygonal mesh

Curved Surfaces

• What makes a good surface representation?
 ◦ Accurate
 ◦ Concise
 ◦ Intuitive specification
 ◦ Local support
 ◦ Affine invariant
 ◦ Arbitrary topology
 ◦ Guaranteed continuity
 ◦ Natural parameterization
 ◦ Efficient display
 ◦ Efficient intersections
Curve Representations

- Function
 - $y = f(x)$

- Implicit
 - $f(x, y) = 0$

- Parametric
 - $x = f(u)$
 - $y = f(u)$

- Subdivision
 - (x, y, z) defined by limit of recursive process

Curved Surface Representations

- Function
 - $z = f(x,y)$

- Implicit
 - $f(x, y, z) = 0$

- Parametric
 - $x = f(u, v)$
 - $y = f(u, v)$
 - $z = f(u, v)$

- Subdivision
 - (x, y, z) defined by limit of recursive process
Function Surface Representation

• Boundary defined by explicit function:
 ◦ \(z = f(x, y) \)

Implicit Surfaces

• Boundary defined by implicit function:
 ◦ \(f(x, y, z) = 0 \)

• Example: linear (plane)
 ◦ \(ax + by + cz + d = 0 \)
Implicit Surfaces

- Example: quadric
 \[f(x,y,z) = ax^2 + by^2 + cz^2 + 2dxy + 2eyz + 2fxz + 2gx + 2hy + 2jz + k \]

- Common quadric surfaces:
 - Sphere
 - Ellipsoid
 - Torus
 - Paraboloid
 - Hyperboloid

[Diagram of Implicit Surfaces]

H&B Figure 10.10

Parametric Surfaces

- Boundary defined by parametric function:
 \[
 \begin{align*}
 x &= f(u, v) \\
 y &= f(u, v) \\
 z &= f(u, v)
 \end{align*}
 \]

- Example (sphere):
 \[
 \begin{align*}
 x &= \cos(\theta)\cos(\phi) \\
 y &= \sin(\theta)\cos(\phi) \\
 z &= \sin(\phi)
 \end{align*}
 \]
Subdivision Surfaces

- Coarse mesh & subdivision rule
 - Define smooth surface as limit of sequence of refinements

Outline

- **Today:**
 - Parametric curves and surfaces

- **Wednesday:**
 - Subdivision surfaces

- **Next week:**
 - Implicit surfaces
Parametric curves

A parametric curve in the plane is expressed as:

\[
\begin{align*}
 x &= x(u) \\
 y &= y(u)
\end{align*}
\]

Example: a circle with radius \(r \) centered at origin:

\[
\begin{align*}
 x &= r \cos u \\
 y &= r \sin u
\end{align*}
\]

Parametric polynomial curves

- A parametric polynomial curve is described:

\[
\begin{align*}
 x(u) &= \sum_{i=0}^{n} a_i u^i \\
 y(u) &= \sum_{i=0}^{n} b_i u^i
\end{align*}
\]

- Advantages of polynomial curves
 - Easy to compute
 - Infinitely differentiable
Piecewise Param Polynomial Curves

- **Idea:**
 - Use different polynomial functions on different parts of the curve

- **Advantage:**
 - Flexibility
 - Control

- **Issue:**
 - Smoothness at “joints”? *(continuity)*

Continuity

- Continuity C^k indicates adjacent curves have the same kth derivative at their joints
C^0 Continuity

- Adjacent curves share …
 - Same endpoints: \(Q_i(1) = Q_{i+1}(0) \)

C^1 Continuity

- Adjacent curves share …
 - Same endpoints: \(Q_i(1) = Q_{i+1}(0) \)
 - Same derivatives: \(Q_i'(1) = Q_{i+1}'(0) \)
C² Continuity

- Adjacent curves share …
 - Same endpoints: \(Q_i(1) = Q_{i+1}(0) \)
 - Same derivatives: \(Q_i'(1) = Q_{i+1}'(0) \)
 - Same second derivatives: \(Q_i''(1) = Q_{i+1}''(0) \)

Spline constructions

- C² interpolating splines
- Hermite
- Bezier
- Catmull-Rom
- B-splines

Blending functions:

\[
Q(u) = \sum_{i=0}^{k} V_i b_i(u)
\]
C^2 Interpolating splines

- Blending functions are chosen so that …
 - Control points are interpolated
 - Adjacent curves meet with C^2 continuity

C^2 Interpolating splines

- Properties:
 - Interpolate control points
 - C^2 continuity
 - No local control
Spline constructions

- C^2 interpolating splines
- Hermite
- Bezier
- Catmull-Rom
 - B-splines

Uniform Cubic B-Splines

- Choose blending functions so that …
 - Cubic polynomials
 - C^2 continuity
 - Local control
 - Points not necessarily interpolated
Uniform Cubic B-Splines

• Derivation:
 ○ Three continuity conditions for each joint J_i …
 » Position of two curves are equal at J_i
 » Derivatives of two curves are equal at J_i
 » Second derivatives of two curves are equal at J_i
 ○ Also, local control implies …
 » Each joint is affected by small set of (4) points

Uniform Cubic B-Splines

• Fifteen continuity constraints:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Index 0</th>
<th>Index 1</th>
<th>Index 2</th>
<th>Index 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 = b_{i0}(0)$</td>
<td>$0 = b_{i0}'(0)$</td>
<td>$0 = b_{i0}''(0)$</td>
<td>$b_{i0}(0) + b_{i1}(0) + b_{i2}(0) + b_{i3}(0) = 1$</td>
<td></td>
</tr>
<tr>
<td>$b_{i0}(1) = b_{i1}(0)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{i1}(1) = b_{i2}(0)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{i2}(1) = b_{i3}(0)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{i3}(1) = 0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{i0}'(1) = b_{i1}'(0)$</td>
<td>$b_{i1}'(1) = b_{i2}'(0)$</td>
<td>$b_{i2}'(1) = b_{i3}'(0)$</td>
<td>$b_{i3}'(1) = 0$</td>
<td></td>
</tr>
<tr>
<td>$b_{i0}''(1) = b_{i1}''(0)$</td>
<td>$b_{i1}''(1) = b_{i2}''(0)$</td>
<td>$b_{i2}''(1) = b_{i3}''(0)$</td>
<td>$b_{i3}''(1) = 0$</td>
<td></td>
</tr>
</tbody>
</table>
Uniform Cubic B-Splines

- Solving the system of equations:
 \[b_{-3}(u) = -\frac{1}{6}u^3 + \frac{1}{2}u^2 - \frac{1}{2}u + \frac{1}{6} \]
 \[b_{-2}(u) = \frac{1}{2}u^3 - u^2 + \frac{2}{3} \]
 \[b_{-1}(u) = -\frac{1}{2}u^3 + \frac{1}{2}u^2 + \frac{1}{2}u + \frac{1}{6} \]
 \[b_0(u) = \frac{1}{6}u^3 \]

- Matrix form for uniform cubic B-spline:
 \[
 Q(u) = \begin{bmatrix}
 u^3 & u^2 & u & 1
 \end{bmatrix}
 \begin{bmatrix}
 -\frac{1}{2} & 1/2 & -\frac{1}{2} & 1/6 \\
 1/6 & -\frac{1}{2} & 1/2 & 0 \\
 1/2 & -1 & 1/2 & 0 \\
 -1/2 & 0 & 1/2 & 0 \\
 1/6 & 2/3 & 1/6 & 0
 \end{bmatrix}
 \begin{bmatrix}
 V_{i-3} \\
 V_{i-2} \\
 V_{i-1} \\
 V_i
 \end{bmatrix}
 \]
Uniform Cubic B-Splines

- Properties:
 - C^2 continuity
 - Local control
 - Approximating (points not interpolated)
 - Convex hull property

Parametric Patches

- Each patch is defined by blending control points
Parametric Patches

- Point \(Q(u,v) \) on the patch is the tensor product of parametric curves defined by the control points.

\[Q(u,v) = UM^{T}V^{T} \]

\[U = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \quad V = \begin{bmatrix} v^3 & v^2 & v & 1 \end{bmatrix} \]

Where \(M \) is a matrix describing the blending functions for a parametric cubic curve (e.g., Bezier, B-spline, etc.)
B-Spline Patches

\[Q(u, v) = U M_{\text{B-Spline}} \begin{bmatrix} P_{1,1} & P_{1,2} & P_{1,3} & P_{1,4} \\ P_{2,1} & P_{2,2} & P_{2,3} & P_{2,4} \\ P_{3,1} & P_{3,2} & P_{3,3} & P_{3,4} \\ P_{4,1} & P_{4,2} & P_{4,3} & P_{4,4} \end{bmatrix} M_{\text{B-Spline}}^T V \]

\[M_{\text{B-Spline}} = \begin{bmatrix} -1/6 & 1/2 & -1/2 & 1/6 \\ 1/2 & -1 & 1/2 & 0 \\ -1/2 & 0 & 1/2 & 0 \\ 1/6 & 2/3 & 1/6 & 0 \end{bmatrix} \]

Watt Figure 6.28

Parametric Surfaces

- Advantages:
 - Easy to enumerate points on surface
 - Possible to describe complex shapes

- Disadvantages:
 - Control mesh must be quadrilaterals
 - Continuity constraints difficult to maintain
 - Hard to find intersections