Kinematics

Tom Funkhouser
Princeton University
COS 526, Fall 2002

Computer Animation

- What is animation?
 - Make objects change over time according to scripted actions

- What is simulation?
 - Predict how objects change over time according to physical laws
3-D and 2-D animation

Homer 3-D
Homer 2-D

Outline

• Principles of animation
• Keyframe animation
• Articulated figures
• Kinematics
• Dynamics
Principles of Traditional Animation

• Squash and stretch
• Slow In and out
• Anticipation
• Exaggeration
• Follow through and overlapping action
• Timing
• Staging
• Straight ahead action and pose-to-pose action
• Arcs
• Secondary action
• Appeal

Disney

Lasseter ’87
Principles of Traditional Animation

- Slow In and Out

Watt Figure 13.5

Principles of Traditional Animation

- Anticipation (and squash & stretch)

Lasseter `87
Principles of Traditional Animation

- Squash and stretch
- Slow In and out
- Anticipation
- Exaggeration
- Follow through and overlapping action
- Timing
- Staging
- Straight ahead action and pose-to-pose action
- Arcs
- Secondary action
- Appeal

Disney

Computer Animation

- Animation pipeline
 - 3D modeling
 - Motion specification
 - Motion simulation
 - Shading, lighting, & rendering
 - Postprocessing

Pixar
Outline

- Principles of animation
- Keyframe animation
- Articulated figures
- Kinematics
- Dynamics

Keyframe Animation

- Define character poses at specific time steps called “keyframes”
Keyframe Animation

• Interpolate variables describing keyframes to determine poses for character “in-between”

Lasseter ’87

Keyframe Animation

• Inbetweening:
 ◦ Linear interpolation - usually not enough continuity

H&B Figure 16.16
Keyframe Animation

• Inbetweening:
 ○ Spline interpolation - maybe good enough

[Diagram of keyframes and inbetweens]

H&B Figure 16.11

Keyframe Animation

• Inbetweening:
 ○ Cubic spline interpolation - maybe good enough
 » May not follow physical laws

[Diagram of cubic spline interpolation]

Lasseter ´87
Keyframe Animation

• Inbetweening:
 ◦ Cubic spline interpolation - maybe good enough
 » May not follow physical laws

Lasseter ´87

Keyframe Animation

• Inbetweening:
 ◦ Inverse kinematics or dynamics

Rose et al. ´96
Outline

• Principles of animation
• Keyframe animation
• Articulated figures
• Kinematics
• Dynamics

Articulated Figures

• Character poses described by set of rigid bodies connected by “joints”
Articulated Figures

- Well-suited for humanoid characters

Articulated Figures

- Joints provide handles for moving articulated figure

Mike Marr, COS 426, Princeton University, 1995
Articulated Figures

- Inbetweening
 - Compute joint angles between keyframes

Example: Walk Cycle

- Articulated figure:
Example: Walk Cycle

- Hip joint orientation:

Example: Walk Cycle

- Knee joint orientation:
Example: Walk Cycle

• Ankle joint orientation:

Example: Run Cycle

Mike Marr, COS 426, Princeton University, 1995
Example: Ice Skating

(Mao Chen, Zaijin Guan, Zhiyan Liu, Xiaohu Qié, CS426, Fall98, Princeton University)

Example: Horse

(Casey McTaggart, CS426, Fall99)
Outline

• Principles of animation
• Keyframe animation
• Articulated figures
• Kinematics
• Dynamics

Kinematics and Dynamics

• Kinematics
 ◦ Considers only motion
 ◦ Determined by positions, velocities, accelerations

• Dynamics
 ◦ Considers underlying forces
 ◦ Compute motion from initial conditions and physics
Example: 2-Link Structure

- Two links connected by rotational joints

Forward Kinematics

- Animator specifies joint angles: Θ_1 and Θ_2
- Computer finds positions of end-effector: X

$$X = (l_1 \cos \Theta_1 + l_2 \cos(\Theta_1 + \Theta_2), l_1 \sin \Theta_1 + l_2 \sin(\Theta_1 + \Theta_2))$$
Forward Kinematics

• Joint motions can be specified by spline curves

\[
X = (x, y)
\]

\[
\Theta_1(0) = 60^\circ \quad \Theta_2(0) = 250^\circ
\]

\[
\frac{d\Theta_1}{dt} = 1.2 \quad \frac{d\Theta_2}{dt} = -0.1
\]
Example: 2-Link Structure

- What if animator knows position of “end-effector”

\[
\begin{align*}
X &= (x, y) \\
\Theta_1, \Theta_2
\end{align*}
\]

Inverse Kinematics

- Animator specifies end-effector positions: X
- Computer finds joint angles: \(\Theta_1 \) and \(\Theta_2 \):

\[
\begin{align*}
\Theta_2 &= \cos^{-1}\left(\frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1l_2}\right) \\
\Theta_1 &= \frac{-l_2 \sin(\Theta_2) x + (l_1 + l_2 \cos(\Theta_2)) y}{(l_2 \sin(\Theta_2)) y + (l_1 + l_2 \cos(\Theta_2)) x}
\end{align*}
\]
Inverse Kinematics

- End-effector postions can be specified by spline curves

\[
\begin{align*}
\Theta_1 & \quad \Theta_2 \\
(0,0) & \quad l_1 \\
& \quad l_2 \\
& \quad X = (x,y)
\end{align*}
\]

Inverse Kinematics

- Problem for more complex structures
 - System of equations is usually under-defined
 - Multiple solutions

\[
\begin{align*}
\Theta_1 & \quad \Theta_2 & \quad \Theta_3 \\
(0,0) & \quad l_1 & \quad l_2 & \quad l_3 \\
& \quad X = (x,y)
\end{align*}
\]

Three unknowns: \(\Theta_1, \Theta_2, \Theta_3\)
Two equations: \(x, y\)
Inverse Kinematics

- Solution for more complex structures:
 - Find best solution (e.g., minimize energy in motion)
 - Non-linear optimization

\[\Theta_1 \]

\[\Theta_2 \]

\[\Theta_3 \]

\[l_1 \]

\[l_2 \]

\[l_3 \]

\[(0,0) \]

\[X = (x,y) \]
Summary of Kinematics

- Forward kinematics
 - Specify conditions (joint angles)
 - Compute positions of end-effectors

- Inverse kinematics
 - “Goal-directed” motion
 - Specify goal positions of end effectors
 - Compute conditions required to achieve goals

Inverse kinematics provides easier specification for many animation tasks, but it is computationally more difficult.

Overview

- Kinematics
 - Considers only motion
 - Determined by positions, velocities, accelerations

- Dynamics
 - Considers underlying forces
 - Compute motion from initial conditions and physics
Dynamics

• Simulation of physics insures realism of motion

Spacetime Constraints

• Animator specifies constraints:
 ◦ What the character’s physical structure is
 » e.g., articulated figure
 ◦ What the character has to do
 » e.g., jump from here to there within time \(t \)
 ◦ What other physical structures are present
 » e.g., floor to push off and land
 ◦ How the motion should be performed
 » e.g., minimize energy
Spacetime Constraints

- Computer finds the “best” physical motion satisfying constraints
- Example: particle with jet propulsion
 - $x(t)$ is position of particle at time t
 - $f(t)$ is force of jet propulsion at time t
 - Particle’s equation of motion is:
 $$mx'' - f - mg = 0$$
 - Suppose we want to move from a to b within t_0 to t_1 with minimum jet fuel:
 $$\text{Minimize } \int_{t_0}^{t_1} f(t)^2 \, dt \text{ subject to } x(t_0) = a \text{ and } x(t_1) = b$$
 Witkin & Kass ’88

Spacetime Constraints

- Discretize time steps:
 $$x'_i = \frac{x_i - x_{i-1}}{h}$$
 $$x''_i = \frac{x_{i+1} - 2x_i + x_{i-1}}{h^2}$$
 $$m\left(x''_i = \frac{x_{i+1} - 2x_i + x_{i-1}}{h^2}\right) - f_i - mg = 0$$
 $$\text{Minimize } h \sum_i |f_i|^2 \text{ subject to } x_0 = a \text{ and } x_1 = b$$
 Witkin & Kass ’88
Spacetime Constraints

• Solve with iterative optimization methods

Witkin & Kass ´88

Spacetime Constraints

• Advantages:
 ◦ Free animator from having to specify details of physically realistic motion with spline curves
 ◦ Easy to vary motions due to new parameters and/or new constraints

• Challenges:
 ◦ Specifying constraints and objective functions
 ◦ Avoiding local minima during optimization
Spacetime Constraints

• Adapting motion:

Original Jump

Heavier Base

Witkin & Kass ’88

Spacetime Constraints

• Adapting motion:

Hurdle

Witkin & Kass ’88
Spacetime Constraints

• Adapting motion:

Ski Jump

Witkin & Kass `88

Spacetime Constraints

• Editing motion:

Li et al. `99
Spacetime Constraints

• Morphing motion:

Gleicher '98

Spacetime Constraints

• Advantages:
 ◦ Free animator from having to specify details of physically realistic motion with spline curves
 ◦ Easy to vary motions due to new parameters and/or new constraints

• Challenges:
 ◦ Specifying constraints and objective functions
 ◦ Avoiding local minima during optimization
Dynamics

- Other physical simulations:
 - Rigid bodies
 - Soft bodies
 - Cloth
 - Liquids
 - Gases
 - etc.

Summary

- Principles of animation
- Keyframe animation
- Articulated figures
- Kinematics
 - Forward kinematics
 - Inverse kinematics
- Dynamics
 - Space-time constraints
 - Also other physical simulations