Advanced Computer Graphics

Thomas Funkhouser
Princeton University
COS 526, Fall 2002

Overview

- Introduction
 - What is this course about?

- Review
 - What background will I need?

- Syllabus
 - What will I learn in this course?

- Mechanics
 - How with the course work?
Introduction

• What is computer graphics?
 ◦ Imaging = representing 2D images
 ◦ Modeling = representing 3D objects
 ◦ Rendering = constructing 2D images from 3D models
 ◦ Animation = simulating changes over time

Background

• Image Processing
 ◦ Basic signal processing
 ◦ Filtering, resampling, warping, ...

• Rendering
 ◦ Polygon rendering pipeline
 ◦ Ray tracing

• Modeling
 ◦ Basic 3D object representations
 ◦ Polygonal meshes

• Animation
 ◦ Basic principles
Background

- Image Processing
 - Basic signal processing
 - Filtering, resampling, warping, ...
- Rendering
 - Polygon rendering pipeline
 - OpenGL
- Modeling
 - Basic 3D object representations
 - Polygonal meshes
- Animation
 - Basic principles

Background

- Image Processing
 - Basic signal processing
 - Filtering, resampling, warping, ...
- Rendering
 - Polygon rendering pipeline
 - Ray tracing
- Modeling
 - Basic 3D object representations
 - Polygonal meshes
- Animation
 - Basic principles

3D Geometric Primitives

Modeling Transformation

Lighting

Viewing Transformation

Projection Transformation

Clipping

Scan Conversion

Image
Background

- Image Processing
 - Basic signal processing
 - Filtering, resampling, warping, ...

- Rendering
 - Polygon rendering pipeline
 - Ray tracing

- Modeling
 - Basic 3D object representations
 - Polygonal meshes

- Animation
 - Basic principles
CS526 Syllabus

• Rendering
 ○ Lighting models
 ○ Global Illumination
 ○ Visibility
 ○ Image-based rendering

• Modeling
 ○ Polygonal meshes
 ○ Spline & subdivision surfaces
 ○ Volumetric representations

• Animation
 ○ Kinematics
 ○ Passive dynamics
 ○ Active dynamics
CS526 Syllabus

- Rendering
 - Lighting models
 - Global Illumination
 - Visibility
 - Image-based rendering

- Modeling
 - Polygonal meshes
 - Spline & subdivision surfaces
 - Volumetric representations

- Animation
 - Kinematics
 - Passive dynamics
 - Active dynamics

CS526 Syllabus

- Rendering
 - Lighting models
 - Global Illumination
 - Visibility
 - Image-based rendering

- Modeling
 - Polygonal meshes
 - Spline & subdivision surfaces
 - Volumetric representations

- Animation
 - Kinematics
 - Passive dynamics
 - Active dynamics
CS526 Syllabus

- Rendering
 - Lighting models
 - Global Illumination
 - Visibility
 - Image-based rendering
- Modeling
 - Polygonal meshes
 - Spline & subdivision surfaces
 - Volumetric representations
- Animation
 - Kinematics
 - Passive dynamics
 - Active dynamics

Plenoptic function
Light fields & lumigraphs
Imposters

Representation
Simplification
Manipulation

Hoppe
CS526 Syllabus

- Rendering
 - Lighting models
 - Global Illumination
 - Visibility
 - Image-based rendering

- Modeling
 - Polygonal meshes
 - Spline & subdivision surfaces
 - Volumetric representations

- Animation
 - Kinematics
 - Passive dynamics
 - Active dynamics

Topologies

- Continuity

Turk

Implicit

- Voxels
- BSPs
CS526 Syllabus

- **Rendering**
 - Lighting models
 - Global Illumination
 - Visibility
 - Image-based rendering

- **Modeling**
 - Polygonal meshes
 - Spline & subdivision surfaces
 - Volumetric representations

- **Animation**
 - Kinematics
 - Passive dynamics
 - Active dynamics
 - Articulated figures
 - Motion capture
 - Inverse kinematics
 - Particle systems
 - Spring-mass systems
CS526 Syllabus

- Rendering
 - Lighting models
 - Global Illumination
 - Visibility
 - Image-based rendering

- Modeling
 - Polygonal meshes
 - Spline & subdivision surfaces
 - Volumetric representations

- Animation
 - Kinematics
 - Passive dynamics
 - Active dynamics

Coursework

- Class participation
 - Do the readings
 - Contribute ideas in class

- Midterm exam
 - 2-4PM on Friday Nov 22

- Thought exercises
 - Answer written questions

- Programming assignments
 - Write code

- Final project
 - Do something cool!
Readings

- Book

- Papers
 - Both classical and recent research papers
 - Assigned for almost every lecture
 - Course web page has list and pdfs

- Resources
 - Related papers
 - Course notes
 - Software

Class Participation

- Contribute ideas in class
 - Do the readings before class

- Lecture snippet
 - 10 minute presentation at end of class
 - on some method or idea or algorithm
 - that everybody should know
 - Choose something that interests you!
Thought Exercises

- Written homeworks
 - Two or three questions
 - Some specific questions
 - Some open-ended questions

- Schedule
 - Five times during semester
 - Due at midnight on Sundays
 - The first one will be available Sunday PM and due one week later

Programming Assignments

- Write small programs
 - MS Visual Studio
 - C++ infrastructure code will be provided

- Schedule
 - Monte Carlo path tracer (due 10/14)
 - Progressive mesh viewer (due 11/18)

- Collaboration
 - Individual work
 - Rules are same as CS426

- Art contest
 - Free points
Final Projects

- Do something cool!
 - Get started on your research

- Schedule
 - Due in Jan 2003

Conclusion

- Course web page: