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ABSTRACT: A classical problem in computational 
geometry is the planar point location problem. This 
problem calls for preprocessing a polygonal subdivision 
of the plane defined by n line segments so that, given a 
sequence of points, the polygon containing each point can 
be determined quickly on-line. Several ways of solving 
this problem in O(log n) query time and O(n) space are 
known, but they are all rather complicated. We propose 
a simple O(log f&query-time, O(n)-space solution, using 
persistent search trees. A persistent search tree differs 
from an ordinary search tree in that after an insertion or 
deletion, the old version of the tree can still be accessed. 
We develop a persistent form of binary search tree that 
supports insertions and deletions in the present and 
queries in the past. The time per query or update is 
O(log m), where m is the total number of updates, and 
the space needed is O(I) per update. Our planar point 
location algorithm is an immediate application of this 
data structure. The structure also provides an alternative 
to Chazelle’s “hive graph” structure, which has a variety 
of applications in geometric retrieval. 

1. PLANAR POINT LOCATION 
Let us consider a classical geometric retrieval prob- 
lem. Suppose the Euclidian plane is subdivided into 
polygons by n line segments’ that intersect only at 

’ We regard a line or half-line as being a line segment. and an infinite region 
whose boundary consists of a finite number of line segments as being a 
polygon. 

0 1986 ACM OOOI-0782/86/0700-0669 750 

their endpoints. (See Figure 1, p. 670.) Given such a 
polygonal subdivision and a sequence of query 
points in the plane, the planar point location problem 
is the problem of determining, for each query point, 
the polygon containing it. (For simplicity we shall 
assume that no query point lies on a line segment of 
the subdivision.) We require that the answers to the 
queries be produced on-line; that is, each query 
point must be located before the next one is known. 

A solution to the point location problem consists 
of an algorithm that preprocesses the polygonal sub- 
division, building a data structure that facilitates lo- 
cation of individual query points. We measure the 
efficiency of such a solution by three parameters: 
the preprocessing time, the space required to store 
the data structure, and the time per query. Of 
these, the preprocessing time is generally the least 
important. 

Many solutions to the point location problem have 
been proposed [lo, 11, 13, 18, 22, 23, 321. If binary 
decisions are used to locate the query points, R(log n) 
time per query is necessary. Dobkin and Lipton [ll] 
showed that this lower bound is tight, exhibiting a 
method with O(log n) query time needing O(n’) 
space and preprocessing time. The Dobkin-Lipton 
result raised the question of whether an O(log n) 
bound on query time can be achieved using only 
O(n) space, which is optimal if the planar subdivi- 
sion must be stored. Lipton and Tarjan [23] an- 
swered this question affirmatively by devising a 
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complicated method based on the planar separator 
theorem [zJ]. 

More recent research has focused on providing a 
simpler algorithm with resou.rce bounds the same as 
or close to those of the Lipton-Tarjan method. Algo- 
rithms with O(log n) query time using O(n) space 
have been developed by Kirkpatrick [18], who used 
the fact that every planar graph has an independent 
set containing a fixed fraction of the vertices; by 
Edelsbrunner, Guibas, and Stolfi [13], who improved 
a method of Lee and Preparata [22] that uses the 
notion of separating chains; and by Cole [lo], who 
noted that the Dobkin-Lipton approach reduces 
planar point location to a problem of storing and 
accessing a set of similar lists. 

FIGURE 1. A Polygonal Subdivision. Arrows denote line segments 
going to infinity. 

FIGURE 2. The Polygonal Subdivision of Figure 1 Divided into 
Slabs. The dashed lines are slab boundaries. 

Cole’s observation is the starting point for our 
work. Let us review the Dobkin-Lipton construction. 
Draw a vertical line through each vertex (intersec- 
tion of line segments) in the planar subdivision. (See 
Figure 2.) This splits the plane into vertical slabs. 
The line segments of the subdivision intersecting a 
slab are totally ordered, from the bottom to the top 
of the slab. Associate with each line segment the 
polygon just above it. Now it is possible to locate a 
query point with two binary searches: the first, on 
the x-coordinate, locates the slab containing the 
point; the second, on the line segments intersecting 
the slab, locates the nearest line segment below the 
point, and hence determines the polygon containing 
the point. (By introducing a dummy line segment 
running from (-w, -a)) to (co, -co), we can guarantee 
that below every point there is a line segment.) 
Since testing whether a point is above or below a 
line segment takes O(1) time, a point query takes 
O(log n) time. Unfortunately, if we build a separate 
search structure (such as a binary search tree) for 
each slab, the worst-case space requirement is e(n’), 
since 8(n) line segments can intersect Q(n) slabs. 

We can reduce the space bound by noticing as 
Cole did that the sets of line segments intersecting 
contiguous slabs are similar. Think of the x-coordi- 
nate as time. Consider how the set of line segments 
intersecting the current slab changes as the time in- 
creases from --03 to +a. As the boundary from one 
slab to the next is crossed, certain segments are de- 
leted from the set and other segments are inserted. 
Over the entire time range, there are 2n insertions 
and deletions, one insertion and one deletion per 
segment. (Think of line segments going to --oo in the 
x-coordinate as being inserted at time -03, and line 
segments going to +m in the x-coordinate as being 
deleted at time +~a.) 

We have thus reduced the point location problem 
to the problem of storing a sorted set subject to in- 
sertions and deletions so that all past versions of the 
set, as well as the current version, can be accessed 
efficiently. In general we shall call a data structure 
persistent if the current version of the structure can 
be modified and all versions of the structure, past 
and present, can be accessed. Ordinary data struc- 
tures, which do not support access in the past, we 
call ephemeral. 

Cole solved the point location problem by devising 
a persistent representation of sorted sets that occu- 
pies O(m) space and has O(log m) access time, where 
m is the total number of updates (insertions and 
deletions) starting from an empty set. However, his 
data structure has two drawbacks. First, his method 
is indirect, proceeding by way of an intermediate 
problem in which item substitutions but neither in- 
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sertions nor deletions are allowed. Second, the en- 
tire sequence of updates must be known in advance, 
making the data structure unusable in situations 
where the updates take place on-line. We shall pro- 
pose a simpler data structure that overcomes these 
drawbacks. 

Our main result, presented in Section 3, is a per- 
sistent form of binary search tree with an O(log m) 
worst-case access/insert/delete time and an 
amortized’ space requirement of O(1) per update. 
Our structure has neither of the drawbacks of 
Cole’s, It provides a simple O(n)-space, O(log n)- 
query-time point location algorithm. It can also re- 
place Chazelle’s “hive graph” [7], a rather compli- 
cated data structure with a variety of uses in geo- 
metric searching. Section 4 contains a brief discus- 
sion of these applications and some remarks about 
extensions and open problems. Some of the results 
presented here appear in preliminary form in 
Sarnak [N]. 

2. PERSISTENT SORTED SETS 
AND SEARCH TREES 
We are now faced with a problem that is purely in 
the realm of data structures, the persistent sorted set 
problem. We wish to maintain a set of items that 
changes over time. The items have distinct keys, 
with the property that any collection of keys of 
items that are in the set simultaneously can be to- 
tally ordered. (The keys of two items that are not in 
the set at the same time need not be comparable.) 
Three operations on the set are allowed: 

access@, s, t): Find and return the item in set s at 
time t with greatest key less than or equal to x. If 
there is no such item, return a special null item. 

insert(i, s, t): At time t, insert item i (with prede- 
fined key) into set s, assuming it is not already 
there. Item i remains in the set until it is explicitly 
deleted. 

delete(i, s, t): At time t, delete item i from set s, 
assuming it is there. 

Starting with an empty set, we wish to perform 
on-line a sequence of operations, including m up- 
dates (insertions and deletions), with the following 
property: 

(*) Any update occurs at a time no earlier than any 
previous operation in the sequence. That is, up- 
dates are allowed only in the present. 

The explicit time parameter tin the operations 
formalizes the notion of persistence. We break ties in 
‘By amortized complrxify we mean the complexity of an operation averaged 
over a worst-case sequence of operations. For a full discussion on this con- 
cept. see ‘Tarjan’s survey paper (391. 

operation time by order in the sequence of opera- 
tions. Property (*) allows accesses to take place 
either in the present (after the most recent update) 
or in the past. In the usual ephemeral version of the 
sorted set problem, the time of an operation is im- 
plicit, corresponding to its position in the sequence 
of operations. An equivalent definition of the 
ephemeral problem is obtained by requiring the se- 
quence of operations to have the following stronger 
property in place of (“): the operations in the se- 
quence occur in nondecreasing order by time. 

This problem and variants of it have been studied 
by many authors [8,10, 12, 21, 27, 28, 31, 33, 361. 

Dobkin and Munro [12] considered the problem of 
maintaining a persistent list subject to access, inser- 
tion, and deletion by list position. (The items in the 
list have positions 1 through n counting from the 
front to the back of the list.) The persistent list prob- 
lem seems to be harder than the persistent sorted set 
problem. Dobkin and Munro proposed an off-line 
method (all updates occur in the sequence before all 
accesses) with O((log m)‘) access time using O(m log 
m) space. Overmars [31] proposed an on-line method 
for the persistent list problem with O(log m) access 
time using O(m log m) space. Overmars also studied 
the much easier version of the persistent sorted set 
problem in which an operation access&, t) need only 
return an item if the set contains an item with key 
exactly equal to x. For this version, he developed an 
O(m)-space, O(log m)-access-time on-line algorithm. 
Chazelle [8] devised an O(m)-space, O((log m)‘)- 
access-time method for the off-line version of the 
original persistent sorted set problem. As discussed 
in Section 1, Cole [lo] discovered an O(m)-space, 
O(log m)-access-time off-line algorithm. 

All these methods use data structures that are 
somewhat ad hoc and baroque. A more direct ap- 
proach is to start with an ephemeral data structure 
for sorted sets or lists and make it persistent. This 
idea was pursued independently by Myers [27, 281, 

Krijnen and Meertens [al], Reps, Teitelbaum, and 
Demers [33], and Swart [36], who independently 
proposed essentially the same idea, which we shall 
call path copying. The resulting data structure can be 
used to represent both persistent sorted sets and per- 
sistent lists with an O(log m) time bound per opera- 
tion and an O(log m) space bound per update. 

In the remainder of this section we shall review 
binary search trees and how they can be made per- 
sistent using path copying. In Section 3 we propose a 
new method that uses space even more efficiently 
than path copying. It leads to a data structure for 
persistent sorted sets (but not persistent lists) that 
has bounds of O(log m) worst-case time per operation 
and O(1) amortized space per update. 
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FIGURE 3. A Rotation in a Binary Tree. The tree can be a subtree (i) all missing (external) nodes are regarded as 
of a larger tree. black; 

A standard data structure for representing ephem- 
eral sorted sets is the binary search tree. This is a 
binary tree3 containing the items of the set in its 
nodes, one item per node, with the items arranged in 
symmetric order: if x is any node, the key of the item 
in x is greater than the keys of all items in its left 
subtree and less than the keys of all items in its right 
subtree. The symmetric-order item arrangement al- 
lows us to perform an access operation by starting at 
the tree root and searching down through the tree, 
along a path determined by comparisons of the 
query key with the keys of items in the tree: if the 
query key is equal to the key of the item in the 
current node, we terminate the access by returning 
the item in the current node; if it is less, we proceed 
to the left child of the current node; if it is greater, 
we proceed to the right child. Either the search ter- 
minates having found an item with key equal to the 
query key, or it runs off the bottom of the tree. In 
the latter case, we return the item in the node from 
which the search last went right; if there is no such 
node, we return null. 

The time for an access operation in the worst case 
is proportional to the depth of the tree. If the tree is 
binary, its depth is at least Llog nl + 1, where n is the 
number of tree nodes. This bound is tight for bal- 
anced binary trees, which have depth O(log n) and 
insertion and deletion time bounds of O(log n) as 
well. There are many types of balanced trees, in- 
cluding AVL or height-balanced frees [l], trees of 
bounded balance or weight-balanced frees [29], and red- 
black trees [14]. In such trees balance is maintained 
by storing certain balance information in each node 
(of a kind that depends upon the type of tree) and 
rebalancing after an insertion or deletion by per- 
forming a series of rotations along the access path 
(the path from the root to the inserted or deleted 
item). A rotation (see Figure 3) is a local transforma- 
tion that changes the depths of certain nodes, pre- 
3See the books of Knuth 1191 and Tarjan [3i’] for OUT tree terminology. 

serves symmetric order, and takes O(1) time, assum- 
ing that a standard binary tree representation is used 
such as storing two pointers in each node, to its left 
and right children. 

For definiteness, we shall concentrate on red- 
black trees, although our ideas apply to certain other 
kinds of balanced trees. In a red-black tree each 
node has a color, either red or black, subject to the 
following constraints: 

(ii) all paths from the root to a missing node contain 
the same number of black nodes; 

(iii) any red node, if it has a parent, has a black 
parent. 

This definition is due to Guibas and Sedgewick 
[14]. Bayer [3] introduced these trees, calling them 
symmetric binary B-trees. Olivie [30] gave an equiva- 
lent definition (see [38]) and used the term half- 
balanced trees. 

Updating red-black trees is especially efficient as 
compared to updating other kinds of balanced trees. 
Rebalancing after an insertion or deletion can be 
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OR 
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- 
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P 

ct 
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FIGURE 4. The Reba!ancing Transformations in Red-Black Tree 
Insertion. Symmetric cases are omitted. Solid nodes are black; 
hollow nodes are red. All unshown children of red nodes are black. 
In cases (c) and (d) the bottommost black node can be missing. 
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done in O(1) rotations and O(log n) color changes 
[38]. Furthermore the number of color changes per 
update is O(1) in the amortized case [15, 16, 251. 
Rebalancing is a bottom-up process. To perform an 
insertion, we proceed as in an access operation. At 
the place where the search runs off the bottom of 
the tree, we attach a new node containing the new 
item. We color this node red. This preserves the 
black constraint (ii) but may violate the red con- 
straint (iii). If there are now two red nodes in a row 
the topmost of which has a red sibling, we color the 
topmost red node, its red sibling black, and their 
common parent (which must be black) red. (See Fig- 
ure 4a.) This may produce a new violation of the red 
constraint. We repeat the transformation of Figure 
4a, moving the violation up the tree, until this trans- 
formation no longer applies. If there is still a viola- 
tion, we apply the appropriate transformation among 
those in Figure 4b, c, and d to eliminate the viola- 
tion. This terminates the insertion. The only rota- 
tions are in the terminal cases: Figure 4c takes one 
rotation and Figure 4d takes two. 

A deletion is similar. We first search for the item 
to be deleted. If it is in a node with a left child, we 
swap the item with its predecessor (in symmetric 
order), which we find by taking a left branch and 
then right branches until reaching a node with no 
right child. Now the item to be deleted is in a node 
with at most one child. We delete this node and 
replace it with its child (if any). This does not affect 
the red constraint but will violate the black con- 
straint if the deleted node was black. If there is a 
violation, the replacing node (which may be missing) 
is short; paths down from it contain one fewer black 
node than paths down from its sibling. We bubble 
the shortness up the tree by repeating the recoloring 
transformation of Figure 5a until it no longer applies. 
Then we perform the transformation of Figure 5b if 
it applies, followed if necessary by one application of 
Figure SC, d, or e. The maximum number of rota- 
tions needed is three. 

Let us now consider how to make red-black trees 
persistent. We need a way to retain the old version 
of the tree when a new version is created by an 
update. We can of course copy the entire tree each 
time an update occurs, but this takes O(n) time and 
space per update. The idea of Myers [27, 281, Krijnen 
and Meertens [21], Reps, Teitelbaum, and Demers 
[33], and Swart [36] is to copy only the nodes in 
which changes are made. Any node that contains a 
pointer to a node that is copied must itself be copied. 
Assuming that every node contains pointers only to 
its children, this means that copying one node re- 
quires copying the entire path to the node from the 
root of the tree. Thus we shall call this method path 

copying. The effect of this method is to create a set of 
search trees, one per update, having different roots 
but sharing common subtrees. Since node colors are 
needed only for update operations, all of which take 
place in the most recent version of the tree, we need 
not copy a node when its color changes; we merely 
overwrite the old color. This saves a constant factor 
in space. (See Figure 6, p. 674.) 

The time and space per insertion or deletion in a 
persistent red-black tree is O(log n) since such an 
operation changes only nodes along a single path in 
the tree. If the update times are arbitrary real num- 
bers, we must build an auxiliary structure to facili- 
tate access to the appropriate root when searching in 
the past. An array of pointers to the roots, ordered 
by time of creation, suffices. We can use binary 
search in this array to access the appropriate root. 
This increases the time per access from O(log n) to 
O(log m). If we use exponential search, the time to 
perform an access in the tth version of the tree can 
be reduced to O(log n + log t): we examine the first, 
second, fourth, . . . , 2rlog tlth root until finding one 
created after the desired search time; then we use 

A.3 - (b) - 

FIGURE 5. The Rebalancing Transformation in Red-Black Tree 
Deletion. The two ambiguous (half-solid) nodes in (d) have the 
same color, as do the two in (e). Minus signs denote short 
nodes. In (a), the top node after the transformation is short 

unless it is the root. 
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RGURE 6. A Persistent Red-Black Tree with 
Path Copyi$f- The initial tree, existipg at time 
Cr;ciMtains A, B, D, F, G, W, I, J, K. ltem E is 
insert& at time 1, item M at time 2, and item 
C at fiiiie &he nodes are labeled by their 
M&s, f f&h, b for black. The nodes are 
al& label+ by their time of creation. All 
edges exit the bottoms of nodes and enter 

the tops. 

rsistent Red-Black Tree Wii 

binary search on the roots from 1 through Zflog tl 
(numbered in creation order). The same kind of 
search starting from the most recently created root 
and proceeding to earlier roots gives an access time 
of O(log n + log(m - t)). If the update times are the 
integers 1 through m, we can use direct access into 
the root array to provide O(l)-time access to the ap- 
propriate root, and the total time for an access opera- 
tion is only O(log n). 

As Swart noted, path copying works on any kind 
of balanced tree, not just on red-black trees. Myers 
used AVL trees, Krijnen and Meertens used B-trees, 
and Reps, Teitelbaum, and Demers used 2,3 trees. 
Path copying is also quite versatile in the applica- 
tions it supports. By storing in each node the size of 
the subtree rooted there, we can obtain an imple- 

mentation of persistent lists (in which access is by 
list position rather than by key). We also have the 
ability to update any version, rather than just the 
current one, provided that an update is assumed to 
create an entirely new version, independent of all 
other versions. In order to have this more general 
kind of updating, we must copy a node when its 
balance information changes as well as when one of 
its pointers changes, but this increases the time and 
space needed for updates by only a constant factor. 

3. SPACE-EFFICIENT PERSISTENT 
SEARCH TREES 
A major drawback of the path copying method is its 
nonlinear space usage. In this section we shall pro- 
pose a method that needs only linear space. We shall 
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use the fact that old balance information need not be 
saved, although this is not essential. Our approach is 
to avoid copying the entire access path each time an 
update occurs. That this approach might work is 
suggested by the observation that in an ephemeral 
red-black tree, only O(1) pointer changes are needed 
per update. 

Suppose we implement persistent red-black trees 
without any node copying, by allowing nodes to be- 
come arbitrarily “fat”: each time we want to change 
a pointer, we store the new pointer in the node, 
along with a time stamp indicating when the change 
occurred and a bit that indicates whether the new 
pointer is a left or right pointer. (This bit is actually 
redundant, since we can determine whether a 
pointer is left or right by comparing the key of the 
item in the node containing the pointer to that of the 
item in the node indicated by the pointer.) When a 
node color is changed we overwrite the old color. 
(See Figure 7.) 

With this approach an insertion or deletion in a 
persistent red-black tree takes only O(1) space, since 
an insertion creates only one new node and either 
kind of update causes only O(1) pointer changes. The 
drawback of the method is its time penalty: since 
a node can contain an arbitrary number of left or 
right pointers, deciding which one to follow during 
a search is not a constant-time operation. If we use 
binary search by time stamp to decide which pointer 
to follow, choosing the correct pointer takes O(log m) 
time, and the time for an access, insertion, or dele- 
tion is O((log n)(log m)). 

We can eliminate this time penalty by introducing 
limited node copying. We allow each node to hold k 
pointers in addition to its original two. We choose k 
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to be a small positive constant; k = 1 will do. When 
attempting to add a pointer to a node, if there is no 
empty slot for a new pointer, we copy the node, 
setting the initial left and right pointers of the copy 
to their latest values. (Thus the new node has k 
empty slots.) We must also store a pointer to the 
copy in the latest parent of the copied node. If the 
parent has no free slot, it, too, is copied. Thus copy- 
ing proliferates through successive ancestors until 
the root is copied or a node with a free slot is 
reached. (See Figure 8.) 

Searching the resulting data structure is quite 
easy: when arriving at a node, we determine which 
pointer to follow by examining the key to decide 
whether to branch left or right and examining the 
time stamps of the extra pointers to select among 
multiple left or multiple right pointers. (We follow 
the pointer with the latest time stamp no greater 
than the search time if there is one, or else the 
initial pointer.) As noted in Section 2, if the update 
times are arbitrary real numbers we must build an 
auxiliary array to guide access operations to the 
proper roots. This makes the time for an access oper- 
ation O(log m), whereas the time for an update oper- 
ation is O(log n). However, in practice the number of 
roots is likely to be much smaller than m, since a 
root will be duplicated relatively infrequently. If the 
update times are consecutive integers, the auxiliary 
array provides O(l)-time access to the roots. 

It remains for us to analyze the space used by the 
data structure. As with path copying, a single update 
operation using limited node copying can result in 
O(log n) new nodes. However, amortized over a se- 
quence of updates, there are only O(1) nodes copied 
per update, implying an O(n) space bound for the 

FIGURE 8. A Persistent Red-Black 
free Wiih Limited Node Copying 
Assuming Each Node Can Hold One 
Extra Pointer. The initial tree and 
insertions are as in Figure 8. The 

labeling is as in Figure 7. 
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data structure. To obtain the amortized space bound 
we need some definitions. We partition the nodes of 
the data structure into two classes, live and dead. 
The live nodes are those reachable from the latest 
tree root by following pointers valid at the current 
time (the time of the most recent update). The live 
nodes form the current version of the search tree. As 
the current time increases, the node partition 
changes: live nodes can become dead but not vice- 
versa. All nodes dead at a given time are not affected 
by any later update. 

Our analysis uses the potential paradigm [39]. We 
define the potential of the data structure to be the 
number of live nodes minus l/k times the number 
of free slots in live nodes. We define the amortized 
space cost of an update operati.on to be the actual 
number of nodes it creates plus the net increase in 
potential it causes. With these definitions, the actual 
number of nodes created by a sequence of updates is 
bounded by the sum over all updates of the amor- 
itzed space cost plus the net decrease in potential 
over the sequence. If we start with an empty data 
structure, the initial potential is zero, and since the 
potential is always nonnegative the total amortized 
space cost is an upper bound on the actual number 
of nodes created. 

The definition of potential is such that copying a 
node has an amortized space cost of zero, since a 
live node with no free slots becomes dead and a new 
live node with k free slots is created, for a net de- 
crease in potential of one, balancing the one new 
node created. Storing a new pointer in a node has an 
amortized space cost of l/k. The creation of a new 
node during an insertion has an amortized space 
cost of one. Since an insertion or deletion requires 
storing O(l) new pointers not counting node copying, 
the amortized space cost of an update is O(1). A 
more careful count shows that an insertion has an 
amortized space cost of at most 1 + 6/k; a deletion, 
at most 7/k. In the special case of k = 1, the amor- 
tized space cost per update is slightly less than indi- 
cated by these bounds: at most six for an insertion or 
deletion. 

The choice k = 1 is probably the most convenient 
in practice and is certainly the easiest to implement. 
However, choosing a larger value of k may reduce 
the space needed by the data structure, since al- 
though the space per node increases, the number of 
node copyings decreases. The best choice of k de- 
pends on the exact way nodes are stored in memory 
and on the average (as opposed to worst-case) num- 
ber of new pointers created by updates. Neverthe- 
less, we shall give a simplified analysis based on the 
amortized bounds derived above. Suppose that 

memory is divided into words, each of which is large 
enough to hold an item, a time stamp, or a pointer. 
We shall ignore the space needed to store node 
colors and the types of extra pointers (left or right); 
as noted above the latter information is redundant 
and the color of a node can if necessary be encoded 
by swapping or not swapping the original left and 
right pointers in a node. Under these assumptions a 
node requires 2k + 3 words of memory, and the 
amortized space cost in words per update is at most 
(2k + 3)(1 + 6/k) = 2k + 18/k + 15. This is mini- 
mized at 27 words per update for k = 3. This choice 
is only marginally better than the 30 words per up- 
date (six nodes of five words each) needed for k = I. 
Both these estimates are probably much larger than 
the expected values. 

Limited node copying applied to red-black trees 
provides a linear-space representation of persistent 
sorted sets but not of persistent lists, because to rep- 
resent lists we must maintain subtree sizes for all 
versions, and each update causes O(log n) subtree 
sizes to change. Limited node copying becomes simi- 
lar to path copying in this case, and the space bound 
per update is O(log n). Our data structure does, how- 
ever, support operations on persistent sorted sets in 
addition to those defined in Section 2. In particular, 
the following three operations are easy to handle: 

access range (x, y, s, t): Find and return all items in 
set s at time t with key between x and y (inclu- 
sive). 

join (sl, s2, t): At time t, combine sets s1 and s2 into 
a single set, named sl. Set s2 becomes empty at 
time t. This operation requires that at time t all 
items in s, have keys less than those of all items 
in sZ, Time t can be any time greater than or equal 
to the time of the most recent update. 

split (sl, sZ, x, t): At time t, split s1 into two sets: a 
new version of sl, containing all items with key 
less than or equal to X, and sz, containing all items 
with key greater than x. Time t can be any time 
greater than or equal to the time of the most 
recent update. 

We shall discuss how to implement these opera- 
tions on ephemeral red-black trees; the extensions to 
persistent trees are straightforward. To perform ac- 
cess range (x, y, s, t), we proceed as in access (x, s, t), 
thereby locating the node e containing the item with 
smallest key no less than x. Then we visit the tree 
nodes starting from e in symmetric order, stopping 
when we reach one containing an item with key 
exceeding y. In an ephemeral tree, the time for such 
a query is O(k + log n), where k is the number of 
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items returned. In a persistent tree the time is 
O(k + log m) assuming update times are arbitrary 
real numbers. 

To discuss joining and splitting, we need the con- 
cept of the rank r(e) of a node e, defined to be the 
number of black nodes on any path from e down to a 
missing node. We can compute the rank of a node in 
time proportional to the rank by walking down from 
the node along any path. (Instead of comparing ranks 
from scratch, we can store with each tree root its 
rank, and then compute ranks on the way down the 
tree along any search path.) Consider a join of sets s1 
and sZ, To perform the join, we delete the item, say 
i, of smallest key in set s2. We compute the ranks rl 
and r2 of the roots of the trees T1 and Tz representing 
s, and the new s2, respectively. Assume y1 z r2. (The 
case r1 < r2 is symmetric.) If rI = r2, we create a new 
black node containing i and make the roots of T1 and 
T2 its children, If y1 = r2 + 1 and the root of Tz is red, 
we color it black and proceed as in the case of rl = 
r2. Otherwise, we color the root of Tz black if it is 
red and locate the node e along the right path4 of T1 
of one higher rank than the root of T2. We create a 
new red node containing i, which becomes the new 
right child of e; its left child is the old right child of e 
and its right child is the root of T2. This may create a 
violation of the red constraint, which we eliminate 
as in insertion, The total time taken by the join is 
O(log n), where YZ is the size of the new tree. Since 
only one new node is created and O(1) pointer 
changes are made, the amortized space bound in the 
persistent version is O(1). Note that once i is deleted 
from T2, and r1 and uZ are computed, the time for the 
rest of the join is O(r, - r2 + 1). Furthermore, the 
rank of the root of the new tree is either rI or rl + 1. 

We implement splitting using repeated joining. 
The easiest way to describe the algorithm is recur- 
sively. Suppose we have a procedure join3 whose 
effect is as follows: 

join3 (e, f, g): Let e, f, g be nodes such that e and g 
are the roots of red-black trees T, and Tz, respec- 
tively, satisfying the condition that all items in T1 
have keys smaller than that of the item in f and 
all items in Tz have keys greater than that of the 
item in f. Combine T1, f, and T2 into a single tree 
whose root has rank max(r(e), r(g)] or max{r(e), 
r(g)] + 1, and return the root of the new tree. 

We implement join3 in the same way as the sec- 
ond half of a binary join; the time it requires is 
0( j r(e) - r(g) + 1 I). Using join3, we can implement a 
procedure split(e, x), whose input is the root e of a 
‘The right pafh of a binary tree is the path from the root through right 
children to a missing node. The lefr path is defined similarly. 

red-black T and a key x, and whose output is a pair 
(f, g) such that f and g are the roots of the trees 
formed when T is split at X. Let left(e) and right(e) be 
the left and right children of node e, respectively. To 
perform split(e, x), we test whether the key of the 
item in e is less than, or equal to x. If so, we perform 
split(righf(e), x), returning (h, g). Then we compute 
f = join3 (left(e), e, h) and return (f, g). The case 
of x less than the key of the item in e is symmetric. 

The splitting algorithm has a running time of 
O(log n), because the multiple joins that take place 
have running times that form a telescoping sum, 
summing to O(log n). (See, for example [2].) The per- 
sistent version has an amortized space bound of 
O(log n). We can reduce this amortized space bound 
to O(log min(k, n - k]), where k and n - k are the 
sizes of the trees resulting from the split, by modify- 
ing the splitting algorithm slightly. To split a tree T 
with root r at key x, we follow the search path for x 
until it changes direction. Suppose the first change 
of direction is from right to left (the opposite case is 
symmetric), and let e be the node from which we 
branch left. (Node e is the last node along the search 
path that is on the right path of T.) We break the 
link connecting e to its parent f and perform split(e, 
x) (as implemented above) returning (g, h). We re- 
place f as the right child of its parent by left(f), 
repairing the possible violation of the color con- 
straints as in the deletion algorithm. Finally, we re- 
turn the pair (join3(r, f, g), h). The time bound is still 
O(log n), The amortized space bound of O(log min(k, 
n - k)) for the persistent version follows from two 
facts: (i) node e has rank O(iog min(k, n - kj) in the 
original tree; (ii) restoring the color constraints after 
replacing node f by its left child takes only O(1) 
pointer changes. 

Maintaining more than one persistent sorted set 
(as one must do if joins and splits are allowed) re- 
quires the maintenance of an auxiliary structure for 
each set to facilitate access to the appropriate root 
when searching. If multiple arrays are hard to use as 
auxiliary structures because of the problem of allo- 
cating storage for them, search trees can be used 
instead. The trees can be either ordinary balanced 
trees or some other kind, such as finger search tree? 
or self-adjusting trees [%I. Depending on the choice 
of structure, the time to access the appropriate root 
is O(log m) or faster. 

We conclude this section with a few remarks 
about the generality of our O(1) amortized space 
bound for insertion, deletion, and join. What makes 
the analysis work is that red-black trees need only 
5A finger search free is a search tree augmented with a few pointers to favored 
nodes, called fingers. Access and update operations in the vicinity of fingers 
are especially efficient [6. 16, 17, 20, 411. 
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O(1) pointer changes per update. This bound hap- 
pens to be worst-case, but for our purpose an amor- 
tized bound would do as well, since the resulting 
space bound is amortized anyway. This means that 
any kind of balanced tree with O(1) amortized struc- 
tural update times can be used in place of red-black 
trees, Examples include red-black trees with top- 
down instead of bottom-up updating [26], weight- 
balanced trees [5], and “weak” or “hysterical” 
B-trees [15, 16, 261. We also have the option of stor- 
ing the items in the external nodes of the tree in- 
stead of in the internal nodes (if we store appropriate 
keys in the internal nodes to guide searches). 

4. APPLICATIONS AND EXTENSIONS 
We have proposed a data structure for representing 
persistent sorted sets. Our structure has O(log m) 
access time, O(log n) update time, and needs O(1) 
amortized space per update starting from an empty 
set. Here n is the current set size and m is the total 
number of updates. Our resource bounds match 
those of Cole [lo], but our data structure is on-line 
and is simple enough to have potential practical 
applications. 

As discussed in Section 1, our structure provides 
an efficient solution to the planar point location 
problem. For a planar subdivision of n line segments, 
the preprocessing time necessary to build the data 
structure is O(n log n), the space needed is O(n), 
and the query time is O(log n). Although these 
bounds have been obtained by others [lo, 14, 18, 231, 
our method is simple enough to be useful in prac- 
tice as well as efficient in theory. The methods of 
Kirkpatrick [18] and Edelsbrunner, Guibas, and 
Stolfi [13], when combined with a new linear-time 
algorithm for triangulating simple polygons [40], 
need O(n) preprocessing time rather than O(n log n). 
Whether this reduction is important depends on the 
application. It is open whether some variant of our 
method has O(n) preprocessing time. 

Our structure also supports a generalization of the 
planar point location problem in which the queries 
are of the following form: given a vertical line seg- 
ment, report all polygons the segment intersects. 
Such a query is equivalent to an access range opera- 
tion on the corresponding persistent sorted set and 
thus takes O(log n + k) time where k is the number 
of reported polygons. This bound has also been ob- 
tained by Chazelle [7], but only by using a compli- 
cated data structure, the hive graph, which is built as 
an extension to a data structure for the planar point 
location problem. Our structure solves both prob- 
lems at once. 

Chazelle gives a number of applications of hive 
graphs to geometric retrieval problems; for each of 
these, our structure provides a simpler solution. As 

an example, given a collection of line segments in 
the plane with i crossings, we can in O((n + i)log n) 
time construct a data structure of size O(n + i) that, 
given a vertical query segment, will allow us to re- 
port all data line segments the query segment 
crosses in O(log n + k) time, where k is the number 
of reported segments. Cole [18] gives several other 
applications to which our structure applies. 

We have obtained several extensions to the result 
presented here, which we shall discuss in detail in a 
future paper. The limited node copying technique 
generalizes to show that any ephemeral linked data 
structure, provided its nodes have constant in- 
degree as well as constant out-degree, can be made 
persistent at an amortized space cost of O(1) per 
structural change and an additive O(log m) time pen- 
alty per access. Whereas limited node copying as 
discussed in the present paper resembles node- 
splitting in B-trees, the generalized technique resem- 
bles the “fractional cascading” idea of Chazelle and 
Guibas [9]. Among other applications, the general- 
ized technique allows the addition of extra pointers, 
such as parent pointers and level links [6], to persist- 
ent red-black trees. 

Our implementation of persistent search trees, al- 
though more space-efficient than the path copying 
method, is not as versatile. For example, path copy- 
ing provides a representation for persistent lists as 
well as persistent sorted sets. For the list application, 
limited node copying is equivalent to path copying 
because the size information necessary for access by 
position must be updated all the way along an access 
path after any insertion or deletion, causing @(log n) 
space usage per update. As noted in Section 2, path 
copying also provides the ability to update any ver- 
sion, rather than just the current one. Adding addi- 
tional pointers, such as parent pointers, to the result- 
ing data structure seems difficult. Nevertheless, path 
copying can be extended to finger search trees, re- 
ducing the space usage for updates in the vicinity of 
fingers. 

There are many open problems concerning geo- 
metric retrieval problems and persistent data struc- 
tures. Perhaps one of the most interesting is how to 
make our planar point location algorithm, or any 
such algorithm, dynamic, so that line segments can 
be inserted and deleted on-line. The dynamization 
techniques of Bentley and Saxe [4] provide a way to 
handle insertions while preserving the O(1) space 
bound. However, the access and insertion time be- 
comes O(log n)‘). Deletion seems to be harder to han- 
dle. An even more challenging problem is to find a 
persistent representation for a dynamically changing 
planar subdivision. A good data structure for this 
purpose would have many applications in computa- 
tional geometry [lo]. 
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CORRIGENDUM 

David S. Scott and S. Sitharama Iyengar, TID-A 
translation invariant data structure for storing im- 
ages. Commun. ACM 29, 5(May 1986), 418-429. 

Page 425, left column, paragraph 1, sentences 6 
and 7 should read: 

Maximal square characterization of Figure 9a us: 
ing TID structure is described in Table II. Table III 
summarizes the best, worst, and average perform- 
ante for the various locations. 

July 1986 Volume 29 Number 7 Communications of the ACM 679 


