# Computer Science 341 

## Discrete Mathematics

Homework 6
Due in class on Wed, Nov 6, 2002

## Collaboration Policy: No collaboration is permitted for this homework.

## Problem 1

An automorphism of a graph $G=(V, E)$ is any isomorphism of $G$ and $G$, i.e. any bijection $f: V \rightarrow V$ such that $\{u, v\} \in E$ if and only if $\{f(u), f(v)\} \in E$. A graph is called asymmetric if its only automorphism is the identity mapping (each vertex is mapped to itself). Show that a graph $G$ with $n$ vertices is asymmetric if and only if $n$ ! distinct graphs on the set $V(G)$ are isomorphic to $G$.

## Problem 2

Show that if a function $d: V \times V \rightarrow N$ satisfies conditions $1-5$ in page 108 of Matousek, then a graph $G=(V, E)$ exists such that $d_{G}\left(v, v^{\prime}\right)=d\left(v, v^{\prime}\right)$ for any pair of elements of $V$.

## Problem 3

a. Find a connected graph of $n$ vertices for which each of the powers $A_{G}^{1}, A_{G}^{2}, \ldots$ of the adjancency matrix contains some zero elements.
b. Let $G$ be a graph on $n$ vertices, $A=A_{G}$ its adjacency matrix, and $I_{n}$ the $n \times n$ identity matrix (with 1 s on the diagonal and 0 s elsewhere). Prove that $G$ is connected if and only if the matrix $\left(I_{n}+A\right)^{n-1}$ has no 0 s .
c. Where are the 0 s in the matrix $\left(I_{n}+A\right)^{n-1}$ if the graph $G$ is not connected?

## Problem 4

a. Construct an example of a sequence of length $n$ in which each term is from the set $\{1,2, \ldots, n-$ $1\}$ and which has an even number of odd terms, and yet the sequence is not a graph score. (You must prove that the sequence is not a graph score.)
b. Let $G$ be a graph with 9 vertices, each of degree 5 or 6 . Prove that it has at least 5 vertices of degree 6 or at least 6 vertices of degree 5 .

## Problem 5

Show that if $G$ is a connected undirected graph with $k$ vertices of odd degree $(k>0)$, then there are $k / 2$ walks, no two of which share an edge, that between them contain all the edges.

