Computer Science 341

Discrete Mathematics
Homework 11
Due at noon on Fri, Dec 13, 2002

Collaboration Policy: You may collaborate in groups of at most 3 students. These groups must be disjoint and discussion across groups is not allowed. Collaboration is limited to discussion of ideas only, and you should write up the solutions entirely on your own and list your collaborators.

Problem 1

(a) Suppose we toss a fair coin until two consecutive heads (HH) come up. What is the expected number of tosses ? (Include the two tosses HH in your count of tosses).
(b) Suppose instead, we toss a fair coin until we see a head followed by a tail (HT). What is the expected number of tosses ? (Again, include the last two tosses HT in your count).
(c) Now, we toss a fair coin until we either see the pattern HH or HT for the first time. What is the probability that we see HH first ?

Problem 2

Let R be the number of runs in n independent tosses of a biased coin. (Runs are consecutive tosses with the same result). Each coin toss is a head (H) with probability p and is a tail (T) with probability $1-p$. Show that the variance of R is at most $4 n \cdot p(1-p)$. (Hint: Let X_{i} be an indicator variable for the event that a new run begins at the i th toss. Express R in terms of X_{i}.) Note that the variance of a random variable R is $E\left[(R-\mu)^{2}\right]$ where $\mu=E[R]$.

Problem 3

Show that for $k>1$, if $n<(\sqrt{k-1}) 2^{\frac{k}{2}}$, it is possible to divide the integers $\{1,2, \ldots, n\}$ into two sets such that neither set contains an arithmetic progression of length k. (An arithmetic progression of length k is a subset of numbers of the form $a, a+d, a+2 d, \ldots a+(k-1) d$.)

Problem 4

A grand party is thrown to celebrate the end of CS 341. As you leave the party, you walk n steps where each step is taken randomly to the left or the right each with probability $1 / 2$, independently of the other steps. (Despite your exhilarated state, you manage to walk in a straight line and each step is the same length).
(a) What is the expected distance (in terms of steps) from your initial location ? Find an expression for the expection (you can leave it as a summation), and show that this expectation is at most $c \sqrt{n}$ for some constant c.
(b) Show that the probability that you are more than $10 \sqrt{n}$ steps away from your initial location is at most 0.01.

