
Solving Recurrence Relations

COS 341 Fall 2002, lectures 9-10

Linear homogeneous recurrence relations

Definition 1 A linear homogeneous recurrence relation of degree k with constant coeffi-
cients is a recurrence relation of the form

an = c1an−1 + c2an−2 + · · · + ckan−k

where c1, c2, . . . , ck are real numbers, and ck 6= 0.

A sequence satisfying a recurrence relation above uniquely defined by the recurrence
relation and the k initial conditions:

a0 = C0, a1 = C1, . . . , ak−1 = Ck−1.

Theorem 1 Let c1 and c2 be real numbers. Suppose that r2 − c1r − c2 = 0 has two distinct

roots r1 and r2. Then the sequence {an} is a solution of the recurrence relation an = c1an−1+
c2an−2 if and only if an = α1r

n
1 + α2r

n
2 for n = 0, 1, 2, . . ., where α1 and α2 are constants.

Proof Sketch: First, we prove that, for any constants α1, α2, α1r
n
1 + α2r

n
2 satisfies the

recurrence relation.
Second, we prove that every solution is of the form α1r

n
1 + α2r

n
2 . Suppose {an} is a

solution of the recurrence relation with initial conditions a0 = C0 and a1 = C1. Then we
show that by picking suitable constants α1, α2, we can set the first two values of the sequence
α1r

n
1 +α2r

n
2 to be C0 and C1. Since the sequences {an} and {α1r

n
1 +α2r

n
2 } satisfy the degree

2 recurrence and agree on the first two values, they must be identical.

Example: Find the solution to the recurrence relation an = an−1 + an−2 with initial condi-
tions a0 = 2 and a1 = 7.

Solution: The characteristic equation is r2 − r − 2 = 0, i.e. (r − 2)(r + 1) = 0. The roots
are 2 and −1. Thus the solution to the recurrence relation is of the form α12

n + α2(−1)n.
Since this must satisfy the initial conditions, we get:

a0 = 2 = α1 + α2

a1 = 7 = α1 · 2 + α2(−1)

Solving, we get α1 = 3 and α2 = −1. Thus, the solution to the recurrence relation is
an = 3 · 2n − (−1)n.
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Theorem 2 Let c1 and c2 be real numbers. Suppose that r2 − c1r− c2 = 0 has only one root

r0. A sequence {an} is a solution of the recurrence relation an = c1an−1 + c2an−2 if and only

if an = α1r
n
0 + α2n · rn

0 for n = 0, 1, 2, . . ., where α1 and α2 are constants.

Example: Solve the recurrence relation an = 6an−1 − 9an−2, with initial conditions a0 = 1
and a1 = 6.

Solution: an = 3n + n3n (steps omitted).

Theorem 3 Let c1, c2, . . . , ck be real numbers. Suppose that the characteristic equation

rk − c1r
k−1 − . . . − ck = 0

has k distinct roots r1, r2, . . . , rk. Then, a sequence {an} is a solution of the recurrence

relation

an = c1an−1 + c2an−2 + . . . ckan−k

if and only if

an = α1r
n
1 + α2r

n
2 + . . . αkr

n
k

for n = 0, 1, 2, . . ., where α1, α2, . . . , αk are constants.

Theorem 4 Let c1, c2, . . . , ck be real numbers. Suppose that the characteristic equation

rk − c1r
k−1 − . . . − ck = 0

has t distinct roots r1, r2, . . . , rt with multiplicities m1, m2, . . . , mt respectively, so that mi ≥ 1
for i = 1, 2, . . . , t and m1 + m2 + · · · + mt = k. Then, a sequence {an} is a solution of the

recurrence relation

an = c1an−1 + c2an−2 + . . . ckan−k

if and only if

an = (α1,0 + α1,1n + · · ·+ α1,m1−1n
m1−1)rn

1

+(α2,0 + α2,1n + · · ·+ α2,m2−1n
m2−1)rn

2

+ · · ·+ (αt,0 + αt,1n + · · ·+ αt,mt−1n
mt−1)rn

t

for n = 0, 1, 2, . . ., where αi,j are constants for 1 ≤ i ≤ t and 0 ≤ j ≤ mi − 1.

Problem: Solve the recurrence relation an = −3an−1 − 3an−2 − an−3 with initial conditions
a0 = 1, a1 = −2 and a2 = −1.

Solution: an = (1 + 3n − 2n2)(−1)n (steps omitted).
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Linear nonhomoeneous recurrence relations with con-

stant coefficients

Definition 2 A linear nonhomogeneous recurrence relation with constant coefficients is a

recurrence relation of the form

an = c1an−1 + c2an−2 + . . . ckan−k + F (n)

where c1, c2, . . . , ck are real numbers, and F (n) is a function not identicaly zero depending

only on n. The recurrence relation

an = c1an−1 + c2an−2 + . . . ckan−k

is called the associated homogeneous recurrence relation.

A particular solution of a recurrence relation is a sequence that satisfies the recurrence
equation; however, it may or may not satisfy the initial conditions.

Theorem 5 If {a(p)
n } is a particular solution of the nonhomogeneous linear recurrence rela-

tion with constant coefficients

an = c1an−1 + c2an−2 + . . . ckan−k + F (n), (1)

then every solution is of the form {a(p)
n + a

(h)
n }, where a

(h)
n is a solution of the associated

homogeneous recurrence relation

an = c1an−1 + c2an−2 + . . . ckan−k.

Proof Sketch: Since {a(p)
n } is a particular solution of (1),

a(p)
n = c1a

(p)
n−1 + c2a

(p)
n−2 + . . . cka

(p)
n−k + F (n), (2)

Let b(n) be an arbitrary solution to the nonhomogeneous recurrence relation. Then,

bn = c1bn−1 + c2bn−2 + . . . ckbn−k + F (n), (3)

Subtracting, (2) from (3), we get:

(bn − a(p)
n ) = c1(bn−1 − a

(p)
n−1) + c2(bn−2 − a

(p)
n−2) + . . . ck(bn−k − a

(p)
n−k) + F (n)

Thus, bn−a
(p)
n is a solution to the associated homogeneous recurrence relation with constant

coefficients.

The above theorem gives us a technique to solve nonhomogeneous recurrence relations
using our tools to solve homogeneous recurrence relations. Given a non-homogeneous recur-
rence relation, we first guess a particular solution. Note that this satisfies the recurrence
equation, but does not necessarily satisfy the initial conditions. Next, we use the fact the

3



required solution to the recurrence relation is the sum of this particular solution and a so-
lution to the associated homogeneous recurrence relation. We already know a general form
for the solution to the homogeneous recurrence relation (from the previous theorems). This
general form will have some unknown constants and their values can be determined from the
fact the the sum of the particular solution and the homogeneous solution must satisfy the
given initial conditions.

Example: Solve the recurrence relation an = 3an−1 + 2n, with initial condition a1 = 3.

Solution: an = −n − 3
2

+ 11
6
3n (steps omitted).

Next, we give a systematic way to guess a particular solution for a large class of functions
F (n).

Theorem 6 Suppose that {an} satisfies the linear nonhomogeneous linear recurrence rela-

tion

an = c1an−1 + c2an−2 + . . . ckan−k + F (n),

where c1, c2, . . . , ck are real numbers nd

F (n) = (btn
t + bt−1n

t−1 + · · ·+ b1n + b0)s
n,

where b0, b1, . . . , bt and s are real numbers. When s is not a root of the characteristic equation

of the associated linear homogeneous recurrence relation, there is a particular solution of the

form

(ptn
t + pt−1n

t−1 + · · ·+ p1n + p0)s
n.

When s is a root of this characteristic equation and its multiplicity is m, there is a particular

solution of the form

nm(ptn
t + pt−1n

t−1 + · · · + p1n + p0)s
n.

The above theorem gives a recipe for picking a particular solution to a nonhomogeneous
recurrence relation. The general form of the particular solution has several unknown con-
stants. Their values can be determined by substituting this general form into the given
nohomogeneous recurrence relation. This will yield a set of equations which can be solved to
determine the values of the constants. (Substituting the general form yields a single equa-
tion. However, this equation says that a particular expression of the form

∑t

i=1 βifi(n) must
be identically 0 for all values of n ≥ k. Here βi are linear expressions involving the unknown
constants and fi(n) are functions of n. This then implies that βi = 0 for all i, giving the
required number of equations required to determine the unknown constants.)

Example: Solve the recurrence relation an = an−1 + n, with initial condition a0 = 0.

Solution: an = 1
2
n2 + 1

2
n (steps omitted).
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Using generating functions to solve recurrence relations

We associate with the sequence {an}, the generating function a(x) =
∑

∞

n=0 anxn. Now, the
recurrence relation for {an} can be interpreted as an equation for a(x). This allows us to
get a formula for a(x) from which a closed form expression for an can be derived.

Example: Find the generating function for the Fibonacci sequence and derive a closed form
expression for the nth Fibonacci number.

Solution: Let F (x) =
∑

n=0∞ fnxn, be the generating function for the Fibonacci sequence.
Since the Fibonacci sequence satisfies the recurrence fn = fn−1 + fn−2, we get an explicit
form for F (x) as follows:

fn = fn−1 + fn−2 n ≥ 2

fnxn = fn−1x
n + fn−2x

n−2 n ≥ 2
∞
∑

n=2

fnxn =
∞
∑

n=2

fn−1x
n +

∞
∑

n=2

fn−2x
n

∞
∑

n=2

fnxn = x
∞
∑

n=1

fnxn + x2
∞
∑

n=0

fnxn

F (x) − f0 − f1x = x(F (x) − f0) + x2F (x)

F (x)(1 − x − x2) = f0 + x(f1 − f0) = x

F (x) =
x

(1 − x − x2)

In order to get an closed form expression for fn, we need to get a closed form expression for
the coefficient of xn in the expansion of the generating function. In order to do this, we use
the technique of decomposition into partial fractions.

x

(1 − x − x2)
=

A

x − x1
+

B

x − x2

where x1 and x2 are the roots of the polynomial 1− x− x2. It is more convenient to express
the generating function in the following form:

x

(1 − x − x2)
=

a

1 − r1x
+

b

1 − r2x

where r1 = 1/x1 and r2 = 1/x2. It turns out that r1 and r2 are the roots of the characteristic
equation (verify this). From this, we can get the closed form expression fn = a · rn

1 + b · rn
2 .

We can solve for a and b from the fact that the initial conditions must be satisfied and this
will give us the result:

fn =
1√
5





(

1 +
√

5

2

)2

−
(

1 −
√

5

2

)2


 .
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The above technique can be generalized to get an expression for the solution of a general
homogeneous recurrence relation with constant coefficients considered in Theorem 4.

an = c1an−1 + c2an−2 + . . . ckan−k

Suppose that the characteristic equation

rk − c1r
k−1 − . . . − ck = 0

has t distinct roots r1, r2, . . . , rt with multiplicities m1, m2, . . . , mt respectively, so that mi ≥
1 for i = 1, 2, . . . , t and m1 + m2 + · · ·+ mt = k.

Let a(x) =
∑

∞

n=0 anxn be the generating function associated with the sequence {an}.
From the recurrence relation, we can get an expression for a(x) as follows:

an = c1an−1 + c2an−2 + . . . ckan−k (4)

a(x) = (c1x + c2x
2 + · · ·+ ckx

k)a(x) + b0 + b1x + · · ·+ bk−1x
k−1 (5)

Here bi, i = 0, . . . , k − 1 are constants where bi = ai −
∑i

j=1 cjai−j. This gives the following
expression for a(x):

a(x) =
b0 + b1x + · · · + bk−1x

k−1

1 − c1x − c2x2 − · · · − ckxk

We express this using partial fractions. First, we factorize the denominator as follows:

1 − c1x − c2x
2 − · · · − ckx

k = (1 − r1x)m1(1 − r2x)m2 · · · (1 − rtx)mt

where r1, . . . , rt are the roots of the characteristic equation with multiplicities m1, . . . , mt

respectively. (This is not obvious. Verify this !)
Now, we can write down the following expression for a(x):

a(x) =
b0 + b1x + · · · + bk−1x

k−1

(1 − r1x)m1(1 − r2x)m2 · · · (1 − rtx)mt

=
A1,0

(1 − r1x)
+

A1,1

(1 − r1x)2
+ · · ·+ A1,m1−1

(1 − r1x)m1

+
A2,0

(1 − r2x)
+

A2,1

(1 − r2x)2
+ · · ·+ A2,m2−1

(1 − r2x)m2

+ · · ·
+

At,0

(1 − rtx)
+

At,1

(1 − rtx)2
+ · · · + At,mt−1

(1 − rtx)mt

where Ai,j are constants for 1 ≤ i ≤ t and 0 ≤ j ≤ mi − 1. Computing the coefficient of xn

using the generalized binomial theorem, we get:

an = (A1,0 + A1,1

(

n + 1

1

)

+ · · · + A1,m1−1

(

n + m1 − 1

m1 − 1

)

)rn
1

+(A2,0 + A2,1

(

n + 1

1

)

+ · · ·+ A2,m2−1

(

n + m2 − 1

m2 − 1

)

)rn
2

+ · · ·+ (At,0 + At,1

(

n + 1

1

)

+ · · · + At,mt−1

(

n + mt − 1

mt − 1

)

)rn
t
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for n = 0, 1, 2, . . ..
Note that this solution is of a slightly different form than the solution claimed in Theo-

rem 4, but the two forms are equivalent, i.e. one form can be converted to the other.
The generating function approach allows us to solve fairly general recurrence relations,

as illustrated below.

Example: Find an explicit formula for the Catalan numbers defined by the recurrence
relation

Cn =

n−1
∑

k=0

CkCn−1−k

where C0 = 1.

Solution: Let C(x) be the generating function
∑

∞

n=0 Cnxn. Then,

Cn =
n−1
∑

k=0

CkCn−1−k

Multiplying by xn, we get:

Cnxn = xn

n−1
∑

k=0

CkCn−1−k

Cnxn = x

n−1
∑

k=0

(Ckx
k) · (Cn−1−kx

n−1−k)

Summing this up from n = 1 to ∞, we get:
∞
∑

n=1

Cnxn = x

∞
∑

n=1

n−1
∑

k=0

(Ckx
k) · (Cn−1−kx

n−1−k)

Note that C(x) =
∑

∞

n=0 Cnx
n. Hence,C(x) − C0 = xC(x)2

xC(x)2 − C(x) + 1 = 0

Solving this quadratic equation, we get:C(x) =
1 ±

√
1 − 4x

2x

The generating function is uniquely defined by the recurrence relation and the initial con-
dition C0 = 1. Hence we should be able to rule out one of the two possibilities. If we
choose the + sign in the expression for C(x), C(x) → ∞ for x → 0. However for x → 0,
C(x) → C0 = 1. This rules out the + sign as a valid possibility. Thus the closed form
expression for the generating function is

C(x) =
1 −

√
1 − 4x

2x

Using this, we can obtain a closed form expression for Cn, the nth Catalan number. We
could certainly do this using the generalized binomial theorem. Here, we give an alternate
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calculation. We know from a previous homework exercise, that

1√
1 − 4t

=

∞
∑

n=0

(

2n

n

)

tn

Integrating from t = 0 to t = x, we get:
∫ x

t=0

1√
1 − 4t

dt =

∞
∑

n=0

(

2n

n

)
∫ x

t=0

tndt

1 −
√

1 − 4x

2x
=

∞
∑

n=0

1

n + 1

(

2n

n

)

xn

Comparing the coefficient of xn on both sides, we get that Cn = 1
n+1

(

2n

n

)

.

Solving functional recurrence relations

Recurrence relations often occur in the analysis of running times of algorithms. Such recur-
rence relations differ from the those we have seen so far in that they express a recurrence for
the value of F (n) where n is a real number. By making appropriate substitutions, many of
these can be solved using the techniques we have learned for solving recurrence relations for
sequences. The idea is to obtain a formula for F (n) for n of a special form and then extend
it to all value of n.

Example: Solve the recurrence:

F (n) = 2F (n/2) + n,

where F (1) = 1.

Solution 1: Consider n = 2k.

F (2k) = 2F (2k−1) + 2k

Let ak = F (2k). Then,
ak = 2ak−1 + 2k, a0 = 1

This can be solved using the techniques we have learned to get the solution ak = (k + 1)2k.
Hence F (2k) = (k + 1)2k. To get a formula for F (n), we substitute k = log2 n. This gives
F (n) = n(1 + log2 n). Finally, we verify that this solution satisfies the given recurrence
relation:

2F (n/2) + n = 2
n

2
(1 + log2(n/2)) + n

= n(1 + log2(n) − 1) + n

= n(1 + log2 n) = F (n)
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Solution 2:

F (n) = 2F (n/2) + n

= 2(2F (n/2) + n/2) + n = 4F (n/4) + 2n

= 4(2F (n/8) + n/4) + 2n = 8F (n/8) + 3n

= · · · = 2kF (n/2k) + k · n

For n = 2k, this gives F (2k) = 2kF (1) + k · 2k = (k + 1)2k. Now we continue as in the
previous solution.
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