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COS 341   Discrete Mathematics

Exponential Generating 
Functions
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Trouble keeping pace ?
• Read the textbook 
• Optional reference text (Rosen) has many more solved exercises 

and practice problems
• Start early on homework assignments
• Come to office hours, make separate appointments
• Learn from discussions with fellow students

• Tutoring:
• Seniors:  See Dean Richard Williams (408 West College, 8-5520)
• Juniors:  See Dean Frank Ordiway (404 West College, 8-1998) 
• Sophomores: See Director of Studies in your home college
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Generating Functions
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Exponential Generating Functions
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Exponential generating function 
examples

What is the generating function for the sequenc (1,1,1e ,1, ?)…
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What is the generating function for the sequenc (1, 2,4e ,8, ?)…
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Operations on exponential generating 
functions

• Addition

• Multiplication by fixed real number

• Shifting the sequence to the right

• Shifting to the left

0 0 1 1   has generating function( , , ) ( ) ( ) a b a b a x b x+ + +…

0 1   has generating functi( , , ) (on )a a a xα α α…
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• Substituting αx for x

• Substitute xn for x
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0 1 2   has generating funct( , , ion) ( ) a a a a xα α α…
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• Differentiation

• Integration

• Multiplication of generating functions

1 2 3   has generating function ( , 2 ,3 ) ( ) (or )'( )da a a a x a x
dx

…
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Differentiation

0 1 2  is the exponential generating function f( ) ( , ,o ,r )a x a a a …

Differentiation is equivalent to shifting the sequence to the left 
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Integration

0 1 2  is the exponential generating function f( ) ( , ,o ,r )a x a a a …

Integration is equivalent to shifting the sequence to the right 
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Multiplication
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Implications of product rule
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Useful for counting with 
indistinguishable objects

Useful for counting with 
ordered objects
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Interpretation of Multiplication: Product Rule

: number of arrangements of type A for  objects
: number of arrangements of type B for  objects
: number of arrangements of type C f
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: number of arrangements of type A for  people
: number of arrangements of type B for  people
: number of arrangements of type C 
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Interpretation of Multiplication: Product Rule
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:  exponential generating function for arrangements of type D
              with exactly  groups
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0

:  exponential generating function for arra( ) 
0

ngements of type A
:  no empty group allowed

A x
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Define arrangements of type  for  labeled objects as follows:

Divide the group of  labeled objects into  groups, 
and arrange each group by an arrangement of type 
(the groups are not numbere ) .
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Example
How many ways can  people be arranged into pairs, 
(the pairs are not numbered) ?
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Derangements (or Hatcheck lady revisited)
: number of permutations on  objects without a fixed n poi t nd n

exponential generating function for number of derang( e) m t: en sD x
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Derangements
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Different proof in Matousek 10.2, problem 17
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Example
How many sequences of  letters can be formed from
A, B, and C such that the number of A's is odd and the
number of B's is odd ?
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Example
How many sequences of  letters can be formed from
A, B, and C such that the number of A's is odd and the
number of B's is odd ?
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