COS 341 Discrete Mathematics

Exponential Generating

 FunctionsTrouble keeping pace ?

- Read the textbook
- Optional reference text (Rosen) has many more solved exercises and practice problems
- Start early on homework assignments
- Come to office hours, make separate appointments
- Learn from discussions with fellow students
- Tutoring:
- Seniors: See Dean Richard Williams (408 West College, 8-5520)
- Juniors: See Dean Frank Ordiway (404 West College, 8-1998)
- Sophomores: See Director of Studies in your home college

Ordinary Generating Functions

$\left(a_{0}, a_{1}, a_{2}, \ldots\right)$: sequence of real numbers
Ordinary
Generating Function of this sequence is
the power series $a(x)=\sum_{i=0}^{\infty} a_{i} \cdot x^{i}$

Exponential Generating Functions

$\left(a_{0}, a_{1}, a_{2}, \ldots\right)$: sequence of real numbers
Exponential Generating function of this sequence is the power series
$a(x)=\sum_{i=0}^{\infty} \frac{a_{i}}{i!} \cdot x^{i}$

Exponential generating function examples

What is the generating function for the sequence $(1,1,1,1, \ldots)$?

$$
\sum_{i=0}^{\infty} \frac{1}{i!} x^{i}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=e^{x}
$$

What is the generating function for the sequence $(1,2,4,8, \ldots)$?

$$
\sum_{i=0}^{\infty} \frac{2^{i}}{i!} x^{i}=1+\frac{2 x}{1!}+\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{3}}{3!}+\cdots=e^{2 x}
$$

Operations on exponential generating functions

- Addition
$\left(a_{0}+b_{0}, a_{1}+b_{1}, \ldots\right)$ has generating function $a(x)+b(x)$
- Multiplication by fixed real number
($\alpha a_{0}, \alpha a_{1}, \ldots$) has generating function $\alpha a(x)$
- Shifting the sequence to the right
$(\underbrace{0, \ldots 0}, a_{0}, a_{1}, \ldots)$ has generatilig function $x^{n} a(x)$
- Shifting to the left
$\frac{\left(a_{k}, a_{k+1}, \ldots\right) \text { has generating function } \frac{a(x)-\sum_{i=0}^{k-1} a_{i}}{n^{n}} \cdot x^{i}}{x^{n}}$
- Differentiation
$\left(a_{1}, 2 a_{2}, 3 a_{3} \ldots\right)$ has gemeratin iunction $\frac{d}{d x} a(x)\left(\right.$ or $\left.a^{\prime}(x)\right)$
- Integration
$\left(0, a_{0}, \frac{1}{2} a_{1}, \frac{1}{3} a_{2} \ldots\right)$ has ene function $\int_{0}^{x} f(t) d t$
- Multiplication of generating functions

Differentiation

$a(x)$ is the exponential generating function for $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$

$$
\begin{gathered}
a(x)=\sum_{i=0}^{\infty} \frac{a_{i}}{i!} \cdot x^{i} \\
\frac{d}{d x} a(x)=\sum_{i=0}^{\infty} \frac{a_{i}}{i!} \cdot i \cdot x^{i-1}=\sum_{i=1}^{\infty} \frac{a_{i}}{(i-1)!} \cdot x^{i-1}
\end{gathered}
$$

$\frac{d}{d x} a(x)$ is the exponential generating function for $\left(a_{1}, a_{2}, a_{3}, \ldots\right)$

Differentiation is equivalent to shifting the sequence to the left

Multiplication

Ordinary

$$
\begin{aligned}
& \left(\sum_{n=0}^{\infty} a_{n} \cdot x^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} \cdot x^{n}\right)=\left(\sum_{n=0}^{\infty} c_{n} \cdot x^{n}\right) \\
& c_{n}=\sum_{k=0}^{n} a_{k} \cdot b_{n-k}
\end{aligned}
$$

Exponential $\left(\sum_{n=0}^{\infty} \frac{a_{n}}{n!} \cdot x^{n}\right)\left(\sum_{n=0}^{\infty} \frac{b_{n}}{n!} \cdot x^{n}\right)=\left(\sum_{n=0}^{\infty} \frac{c_{n}}{n!} \cdot x^{n}\right)$

$$
\begin{aligned}
& \frac{c_{n}}{n!}=\sum_{k=0}^{n} \frac{a_{k}}{k!} \cdot \frac{b_{n-k}}{(n-k)!} \\
& c_{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} a_{k} \cdot b_{n-k}=\sum_{k=0}^{n}\binom{n}{k} a_{k} \cdot b_{n-k}
\end{aligned}
$$

Implications of product rule

Interpretation of Multiplication: Product Rule

Given arrangements of type A and type B, define arrangements of type C for n labeled objects as follows:

Divide the group of n labeled objects into two groups, the First group and the Second group; arrange the First group by an arrangement of type A and the Second group by an arrangement of type B.
a_{n} : number of arrangements of type A for n objects
b_{n} : number of arrangements of type B for n objects c_{n} : number of arrangements of type C for n objects
$A(x)$: exponential generating function for arrangements of type A $a_{0}=0$: no empty group allowed

Define arrangements of type D for n labeled objects as follows:

Divide the group of n labeled objects into k groups, the First group, Second group,..,k th group $(k=0,1,2, \ldots)$ arrange each group by an arrangement of type A.
$D(x)$: exponential generating function for arrangements of type D

Interpretation of Multiplication: Product Rule

a_{n} : number of arrangements of type A for n people
b_{n} : number of arrangements of type B for n people
c_{n} : number of arrangements of type C for n people

$$
c_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} \cdot b_{n-k}
$$

a_{n} : exponential generating function $A(x)$
b_{n} : exponential generating function $B(x)$
c_{n} : exponential generating function $C(x)$

$$
C(x)=A(x) B(x)
$$

$D_{k}(x)$: exponential generating function for arrangements of type D with exactly k groups

$$
\begin{aligned}
D_{k}(x) & =A(x)^{k} \\
D(x) & =\sum_{k=0}^{\infty} D_{k}(x) \\
& =\sum_{k=0}^{\infty} A(x)^{k} \\
& =\frac{1}{1-A(x)}
\end{aligned}
$$

$A(x)$: exponential generating function for arrangements of type A $a_{0}=0$: no empty group allowed

Define arrangements of type E for n labeled objects as follows:

Divide the group of n labeled objects into k groups, and arrange each group by an arrangement of type A (the groups are not numbered) .
$E(x)$: exponential generating function for arrangements of type E

Example

How many ways can n people be arranged into pairs, (the pairs are not numbered)?
$A(x)$: exponential generating function for a single pair

$$
\begin{gathered}
a_{2}=1, a_{i}=0 \text { for } \mathrm{i} \neq 2 \\
A(x)=\frac{x^{2}}{2}
\end{gathered}
$$

$E(x)$: exponential generating function for arranging n people into pairs

$$
E(x)=e^{\frac{x^{2}}{2}}
$$

x^{n} term $=\frac{e_{n}}{n!} x^{n}=\left(\frac{x^{2}}{2}\right)^{n / 2} \frac{1}{(n / 2)!} \quad e_{n}=\frac{n!}{2^{n / 2}(n / 2)!}$
$E_{k}(x)$: exponential generating function for arrangements of type E with exactly k groups

$$
\begin{aligned}
& E_{k}(x)=\frac{A(x)^{k}}{k!} \\
& \begin{aligned}
E(x) & =\sum_{k=0}^{\infty} E_{k}(x) \\
& =\sum_{k=0}^{\infty} \frac{A(x)^{k}}{k!} \\
& =e^{A(x)}
\end{aligned}
\end{aligned}
$$

Derangements (or Hatcheck lady revisited)

d_{n} : number of permutations on n objects without a fixed point
$D(x)$: exponential generating function for number of derangements
A permutation on $[n]$ can be constructed by picking
a subset K of $[n]$, constructing a derangement of K and
fixing the elements of $[n]-K$.
Every permutation of $[\mathrm{n}]$ arises exactly once this way.
EGF for all permutations $=\sum_{n=0}^{\infty} \frac{n!}{n!} x^{n}=\frac{1}{1-x}$
EGF for permutations with all elements fixed $=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}=e^{x}$

$$
\frac{1}{1-x}=D(x) \cdot e^{x}
$$

$$
\begin{aligned}
& \quad \text { Derangements } \\
& \frac{1}{1-x}=D(x) \cdot e^{x} \\
& D(x)=e^{-x} \frac{1}{1-x} \\
&=\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} x^{n}\right) \\
& \frac{d_{n}}{n!}= \text { coefficient of } x^{n}=\left(\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}\right) \\
& d_{n}=n!\left(\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}\right)
\end{aligned}
$$

Different proof in Matousek 10.2, problem 17

Example

How many sequences of n letters can be formed from A, B, and C such that the number of A's is odd and the number of B's is odd?

$$
\begin{aligned}
\text { required EGF } & =\frac{e^{3 x}-2 e^{x}+e^{-x}}{4} \\
\text { coefficient of } x^{n} & =\frac{1}{n!}\left(\frac{3^{n}-2+(-1)^{n}}{4}\right) \\
\text { required number } & =\frac{3^{n}-2+(-1)^{n}}{4}
\end{aligned}
$$

