COS 341 Discrete Mathematics

Advanced Counting

Administrative Issues

- Textbook update:
- Bookstore will get one additional copy of textbook.
- Copies will be available at Triangle, 150 Nassau Street (Tel: 609924 4630) for $\$ 35$ beginning today. They are open M-F 8am-6pm.
- Updated collaboration policy
- Tutoring ?
- Readings for this week: Matousek and Nesetril, Chapter 10

Inclusion-Exclusion principle

$$
\begin{aligned}
|A \cup B \cup C|= & |A|+|B|+|C| \\
& -|A \cap B|-|A \cap C|-|B \cap C| \\
& +|A \cap B \cap C|
\end{aligned}
$$

Inclusion-Exclusion principle

$$
\begin{aligned}
\mid A_{1} \cup A_{2} \cup \cdots \cup & A_{n} \mid \\
= & \sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1 \leq i_{i} \leq i_{2} \leq n}^{n}\left|A_{i_{1}} \cap A_{i_{2}}\right| \\
& +\sum_{1 \leq i_{1} \leq i_{2} \leq i_{3} \leq n}^{n}\left|A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}\right| \\
& \quad-\cdots+(-1)^{n-1}\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right|
\end{aligned}
$$

Hatcheck lady problem

n gentlemen arrive at a party and leave their hats in the cloak room. On their departure, the hatcheck lady absentmindedly hands back a hat to each man at random.

What is the probability that none of the men receives their own hat?

- n ! ways of assigning hats back to men
- What fraction of these assignments are such that no man receives his own hat?

Hatcheck lady

- Number hats and men $1,2, . ., \mathrm{n}$
- $\pi(\mathrm{i})$: number of hat received by i th man
- π is a permutation
- Index i with $\pi(\mathrm{i})=\mathrm{i}$ is a fixed point of π
- $\mathrm{D}(\mathrm{n})$: number of permutations with no fixed point

Enter inclusion-exclusion

- S_{n} : set of all permutations
- $\mathrm{A}_{\mathrm{i}}=\left\{\pi \in \mathrm{S}_{\mathrm{n}}: \pi(\mathrm{i})=\mathrm{i}\right\}$
- $\cup_{\mathrm{i}} \mathrm{A}_{\mathrm{i}}$: bad permutations

$$
\begin{aligned}
& \left|A_{i}\right|=(n-1)! \\
& \left|A_{i} \cap A_{j}\right|=(n-1)! \\
& \left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|=(n-k)!
\end{aligned}
$$

Enter inclusion-exclusion

$$
\begin{gathered}
\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|=(n-k)! \\
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|=\sum_{k=1}^{n}(-1)^{k-1}\binom{n}{k}(n-k)! \\
=\sum_{k=1}^{n}(-1)^{k-1} \frac{n!}{k!} \\
\begin{aligned}
D(n) & =n!-\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right| \\
& =n!-\frac{n!}{1!}+\frac{n!}{2!}-\cdots+(-1)^{n} \frac{n!}{n!} \\
= & n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\cdots+(-1)^{n} \frac{1}{n!}\right)
\end{aligned}
\end{gathered}
$$

Finishing up

$$
\begin{aligned}
& 1-\frac{1}{1!}+\frac{1}{2!}-\cdots+(-1)^{n} \frac{1}{n!} \text { converges to } e^{-1} \\
& D(n) \approx \frac{n!}{e}
\end{aligned}
$$

Probability that nobody gets their hat back converges to the constant $\mathrm{e}^{-1}=0.36787$ independent of the number of men !

Algebraic derivation of identities on binomial coefficients

Binomial Theorem:
$\begin{aligned}(1+x)^{n} & =\sum_{k=0}^{n}\binom{n}{k} x^{k} \\ & =\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\ldots+\binom{n}{n-1} x^{n-1}+\binom{n}{n} x^{n}\end{aligned}$
Equality of two polynomials implies equality of corresponding coefficients

Algebraic derivation of identities on binomial coefficients

$$
\begin{gathered}
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n} \\
(1+x)^{n}(1+x)^{n}=(1+x)^{2 n}
\end{gathered}
$$

coefficient of x^{n} on LHS

$$
\begin{aligned}
& =\binom{n}{0}\binom{n}{n}+\binom{n}{1}\binom{n}{n-1}+\binom{n}{2}\binom{n}{n-2}+\cdots+\binom{n}{n}\binom{n}{0} \\
& =\sum_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}
\end{aligned}
$$

Algebraic derivation of identities on binomial coefficients

$$
\begin{gathered}
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n} \\
(1+x)^{n}(1+x)^{n}=(1+x)^{2 n}
\end{gathered}
$$

coefficient of x^{n} on LHS $=\sum_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}$
coefficient of x^{n} on RHS $=\sum_{k=0}^{n}\binom{2 n}{n}$

Algebraic derivation of identities on binomial coefficients

$$
\begin{gathered}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{n}{n-k}=? \\
(1-x)^{n}(1+x)^{n}=\left(1-x^{2}\right)^{n}
\end{gathered}
$$

coefficient of x^{n} on LHS $=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{n}{n-k}$
coefficient of x^{n} on RHS $= \begin{cases}0 & \text { when } n \text { odd } \\ (-1)^{n / 2}\binom{n}{n / 2} & \mathrm{n} \text { even }\end{cases}$

Algebraic derivation of identities on binomial coefficients

$$
\begin{gathered}
\sum_{k=0}^{n}(-1)^{k} k\binom{n}{k}=? \\
(1-x)^{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} x^{k} \\
\frac{d}{d x}(1-x)^{n}=\frac{d}{d x} \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} x^{k} \\
-n(1-x)^{n-1}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} k \cdot x^{k-1}
\end{gathered}
$$

Algebraic derivation of identities on binomial coefficients

$$
\begin{gathered}
\sum_{k=0}^{n}(-1)^{k} k\binom{n}{k}=? \\
-n(1-x)^{n-1}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} k \cdot x^{k-1}
\end{gathered}
$$

substitute $x=1$

$$
0=\sum_{k=0}^{n}(-1)^{k} k\binom{n}{k}
$$

Power series

Infinite series of the form $a_{0}+a_{1} x+a_{2} x^{2}+\cdots$

$$
\frac{1}{1-x}=1+x+x^{2}+\cdots
$$

Series converges for x in the interval $(-1,1)$
Function contains all the information about series
Differentiate k times and substitute $\mathrm{x}=0$, we get k ! times coefficient of x^{k}
Taylor series of the function $\frac{1}{1-x}$ at $x=0$

Power series

$\left(a_{0}, a_{1}, a_{2}, \ldots\right)$: sequence of real numbers
$\left|a_{n}\right| \leq K^{n}$
For any number $x \in\left(-\frac{1}{K}, \frac{1}{K}\right)$, the series
$a(x)=\sum_{i=0}^{\infty} a_{i} \cdot x^{i}$ converges
Values of $\mathrm{a}(\mathrm{x})$ in arbitrarily small neighborhod of 0
uniquely determine ($a_{0}, a_{1}, a_{2}, \ldots$)
$a_{n}=\frac{a^{(n)}(0)}{n!}$

Generating functions

$\left(a_{0}, a_{1}, a_{2}, \ldots\right)$: sequence of real numbers Generating function of this sequence is
the power series $a(x)=\sum_{i=0}^{\infty} a_{i} \cdot x^{i}$

Generating function basics

What is the generating function of the sequence ($1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$) ?

$$
\begin{gathered}
1+\frac{1}{2} x+\frac{1}{3} x^{2}+\frac{1}{4} x^{3}+\cdots \\
-\frac{\ln (1-x)}{x}
\end{gathered}
$$

$$
\begin{aligned}
x+\frac{1}{2} x+\frac{1}{3} x^{2}+\frac{1}{4} x^{3}+\cdots & =-\ln (1-x) \\
1+\frac{1}{1!} x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots & =e^{x}
\end{aligned}
$$

Generating function toolkit:

Generalized binomial theorem

$$
\binom{r}{k}=\frac{r(r-1)(r-2) \ldots(r-k+1)}{k!}
$$

$(1+x)^{r}$ is the generating function
for the sequence $\left(\binom{\mathrm{r}}{0},\binom{\mathrm{r}}{1},\binom{\mathrm{r}}{2},\binom{\mathrm{r}}{3}, \ldots\right)$
The power series $\binom{\mathrm{r}}{0}+\binom{\mathrm{r}}{1} x+\binom{\mathrm{r}}{2} x^{2}+\binom{\mathrm{r}}{3} x^{3}+\ldots$
always converges for all $|x|<1$

Negative binomial coefficients?

$$
\begin{aligned}
& \binom{r}{k}=(-1)^{k}\binom{-r+k-1}{k}=(-1)^{k}\binom{-r+k-1}{-r-1} \\
& \frac{1}{(1-x)^{n}}=\binom{\mathrm{n}-1}{\mathrm{n}-1}+\binom{\mathrm{n}}{\mathrm{n}-1} x+\binom{\mathrm{n}+1}{\mathrm{n}-1} x^{2}+\cdots+\binom{\mathrm{n}+\mathrm{k}-1}{\mathrm{n}-1} x^{k}+\ldots \\
& \frac{1}{1-x}=1+x+x^{2}+\cdots
\end{aligned}
$$

Operations on power series

- Addition

$$
\left(a_{0}+b_{0}, a_{1}+b_{1}, \ldots\right) \text { has generating function } a(x)+b(x)
$$

- Multiplication by fixed real number

$$
\left(\alpha a_{0}, \alpha a_{1}, \ldots\right) \text { has generating function } \alpha a(x)
$$

- Shifting the sequence

$$
(\underbrace{0, \ldots 0}_{n \times}, a_{0}, a_{1}, \ldots) \text { has generating function } x^{n} a(x)
$$

- Shifting to the left
- Substituting $\alpha \mathrm{x}$ for x
($a_{0}, \alpha a_{1}, \alpha^{2} a_{2} \ldots$) has generating function $a(\alpha x)$
$(1,2,4,8, \ldots)$ has generating function ?
- Substitute x^{n} for x

$$
\begin{aligned}
& (1,1,2,2,4,4,8,8, \ldots) \text { has generating function? } \\
& \frac{1}{1-2 x^{2}}+\frac{x}{1-2 x^{2}}
\end{aligned}
$$

- Integration and differentiation

$$
\begin{aligned}
& \left(a_{0}, 2 a_{1}, 3 a_{2} \ldots\right) \text { has generating function? } \\
& \left(0, a_{0}, \frac{1}{2} a_{1}, \frac{1}{3} a_{2} \ldots\right) \text { has generating function? }
\end{aligned}
$$

- Multiplication of generating functions

