COS 341 Discrete Mathematics

Counting

Administrative Issues

- Bookstore has run out of copies of textbook.
- Readings for this week: Matousek and Nesetril, Chapter 2 next week: Chapter 10
- Homework policy:
- All problems on a homework carry the same weight, unless stated otherwise
- All homeworks will be equally weighted
- Homeworks due in class on Wednesday
- Late homeworks submitted by 5pm Friday will be penalized 50\%
- No late homeworks accepted after 5pm Friday.

How many ways are there to write a nonnegative integer m as a sum of r nonnegative integers (order is important) ?

$$
\text { e.g. } \begin{aligned}
m & =3, r=2 \\
3 & =0+3 \\
& =1+2 \\
& =2+1 \\
& =3+0
\end{aligned}
$$

How many ordered r-tuples $\left(i_{1}, i_{2}, \ldots, i_{r}\right)$
of nonnegative integers satisfy the equation

$$
i_{1}+i_{2}+\cdots+i_{r}=m
$$

$$
i_{1}+i_{2}+\cdots+i_{r}=m
$$

m indistinguishable balls and r boxes

How many ways of placing m balls in r boxes ?
Each placement gives a solution of the equation

$0+1+0+3+1+2=7$

Placing balls in boxes

$$
\text { | • | | } 000 \mid \text { 。 } 1 \circ \circ
$$

m balls r-1 walls

Every arrangement of m balls and $r-1$ walls gives a unique placement of m balls into r boxes

$\mathrm{m}+\mathrm{r}-1$ objects arranged in a row, m balls, $\mathrm{r}-1$ walls

Number of choices of $\mathrm{r}-1$ positions amongst $\mathrm{m}+\mathrm{r}-1$

$$
\binom{m+r-1}{r-1}
$$

Number of solutions of the equation

$$
i_{1}+i_{2}+\cdots+i_{r}=m
$$

Properties of Binomial coefficients

$$
\begin{gathered}
\binom{n}{k}=\binom{n}{n-k} \\
\binom{n-1}{k-1}+\binom{n-1}{k}=\binom{n}{k}
\end{gathered}
$$

A messy proof

$$
\begin{aligned}
\binom{n-1}{k-1}+\binom{n-1}{k} & =\frac{(n-1)!}{(n-k)!(k-1)!}+\frac{(n-1)!}{(n-k-1)!k!} \\
& =\frac{(n-1)!}{(n-k-1)!(k-1)!}\left(\frac{1}{n-k}+\frac{1}{k}\right) \\
& =\frac{(n-1)!}{(n-k-1)!(k-1)!}\left(\frac{n}{(n-k) k}\right) \\
& =\frac{n!}{(n-k)!k!}=\binom{n}{k}
\end{aligned}
$$

A more elegant proof

Fix an element a of an n
element set

$$
\binom{n-1}{k-1}+\binom{n-1}{k}=\binom{n}{k}
$$

Number of k-element subsets that include a

Number of k-element subsets that do not include a

> Total number of k-element subsets

Pascal's triangle

$$
\begin{aligned}
& \binom{n-1}{k-1}+\binom{n-1}{k}=\binom{n}{k} \\
& 1 \\
& 1 \quad 1 \\
& 121 \\
& 1331 \\
& \begin{array}{lllll}
1 & 4 & 6 & 4 & 1
\end{array} \\
& \begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array} \\
& \binom{4}{1}+\binom{4}{2}=\binom{5}{2}
\end{aligned}
$$

What is the sum of numbers in the nth row of Pascal's triangle?

Binomial Theorem

$$
\begin{aligned}
(x+y)^{n} & =\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \\
& =\binom{n}{0} y^{n}+\binom{n}{1} x^{1} y^{n-1}+\binom{n}{2} x^{2} y^{n-2}+\ldots+\binom{n}{n-1} x^{n-1} y+\binom{n}{n} x^{n}
\end{aligned}
$$

Proof of Binomial theorem

$(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$
$(x+y)^{n}=\underbrace{(x+y) \cdot(x+y) \cdot \ldots \cdot(x+y)}_{n \text { times }}$
Coefficient of $x^{k} y^{n-k}$
$=$ number of ways of picking $k x^{\prime}$ s from n terms

$$
=\binom{n}{k}
$$

$$
\begin{aligned}
(1+x)^{n} & =\sum_{k=0}^{n}\binom{n}{k} x^{k} \\
& =\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\ldots+\binom{n}{n-1} x^{n-1}+\binom{n}{n} x^{n}
\end{aligned}
$$

Proofs using the binomial theorem

Substitute $x=1$ in

$$
\begin{gathered}
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} \\
2^{n}=\sum_{k=0}^{n}\binom{n}{k}
\end{gathered}
$$

Proofs using the binomial theorem

Substitute $x=-1$ in

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

$$
0=\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\binom{n}{3}+\ldots=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}
$$

$$
2^{n}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\binom{n}{3}+\ldots
$$

$$
2^{n}=2\left[\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\ldots\right]
$$

Further identities

$$
\begin{gathered}
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n} \\
\sum_{k=0}^{n}\binom{n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}
\end{gathered}
$$

How many distinct words can you obtain by permuting the letters of M I S S I S S I P P I?

$$
\begin{gathered}
11 \text { letters: } 1 \mathrm{M}, 4 \mathrm{I}, 4 \mathrm{~S}, 2 \mathrm{P} \\
\mathrm{M}_{1} \mathrm{I}_{1} \mathrm{~S}_{1} \mathrm{~S}_{2} \mathrm{I}_{2} \mathrm{~S}_{3} \mathrm{~S}_{4} \mathrm{I}_{3} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{I}_{4}
\end{gathered}
$$

11! permutations
How many indexed words give you a particular unindexed word?
e.g. S I P I S M S I P I S

4! ways to place indices of I
4! ways to place indices of S
2 ! ways to place indices of P
1 ! way for indices of M
number of distinct words
$=\frac{11!}{4!4!2!1!}$

Generalization

n objects of m different kinds
k_{i} indistinguishable objects of i th kind

$$
k_{1}+k_{2}+\ldots+k_{m}=n
$$

Then the total number of distinct arrangements is

$$
\begin{gathered}
\frac{n!}{k_{1}!k_{2}!\ldots k_{m}!} \quad\binom{n}{k_{1}, k_{2}, \ldots, k_{m}} \\
\begin{array}{c}
\text { Multinomial } \\
\text { coefficient }
\end{array}
\end{gathered}
$$

$$
m=2 \quad\binom{n}{k, n-k}=\binom{n}{k}
$$

Multinomial theorem

$$
\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n}=
$$

$$
\sum_{\substack{k_{1}+\ldots+k_{m}=n \\ k_{1}, \ldots, k_{m} \geq 0}}\binom{n}{k_{1}, k_{2}, \ldots, k_{m}} x_{1}^{k_{1}} x_{2}^{k_{2}} \ldots x_{m}^{k_{m}}
$$

Inclusion-Exclusion principle

Given $|\mathrm{A}|,|\mathrm{B}|,|\mathrm{A} \cap \mathrm{B}|$, what is $|\mathrm{A} \cup \mathrm{B}|$?

$$
|\mathrm{A} \cup \mathrm{~B}|=|\mathrm{A}|+|\mathrm{B}|-|\mathrm{A} \cap \mathrm{~B}|
$$

Inclusion-Exclusion principle

$$
\begin{aligned}
|A \cup B \cup C|= & |A|+|B|+|C| \\
& -|A \cap B|-|A \cap C|-|B \cap C| \\
& +|A \cap B \cap C|
\end{aligned}
$$

Inclusion-Exclusion principle

$$
\begin{aligned}
\mid A_{1} \cup A_{2} \cup \cdots \cup & A_{n} \mid \\
= & \sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1 \leq i_{i} \leq i_{2} \leq n}^{n}\left|A_{i_{1}} \cap A_{i_{2}}\right| \\
& +\sum_{1 \leq i_{1} \leq i_{2} \leq i_{3} \leq n}^{n}\left|A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}\right| \\
& \quad-\cdots+(-1)^{n-1}\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right|
\end{aligned}
$$

Proof of inclusion-exclusion principle

Consider an element $x \in A_{1} \cup A_{2} \cup \cdots \cup A_{n}$

Contribution to LHS $=1$

What is the contribution to RHS ?
Suppose x belongs to j sets.
Rename sets to be $A_{1}, A_{2}, \ldots, A_{j}$
x appears in intersection of every
k-tuple of sets amongst $A_{1}, A_{2}, \ldots, A_{j}$

Proof of inclusion-exclusion principle

x appears in intersection of every
k-tuple of sets amongst $A_{1}, A_{2}, \ldots, A_{j}$
contribution of x to RHS

$$
\begin{aligned}
& =\sum_{i=1}^{k}(-1)^{k-1}\binom{j}{k} \\
& =j-\binom{j}{2}+\binom{j}{3}-\cdots+(-1)^{j-1}\binom{j}{j} \\
& =1
\end{aligned}
$$

