
1

COS 341   Discrete Mathematics

Counting
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Administrative Issues
• Bookstore has run out of copies of textbook.
• Readings for this week: Matousek and Nesetril, Chapter 2

next week: Chapter 10

• Homework policy:
• All problems on a homework carry the same weight, unless 

stated otherwise 
• All homeworks will be equally weighted
• Homeworks due in class on Wednesday
• Late homeworks submitted by 5pm Friday will be 

penalized 50%
• No late homeworks accepted after 5pm Friday.
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How many ways are there to write a nonnegative integer 
as a sum of  nonnegative integers (order is important) ?
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How many ordered -tuples 
of nonnegative integers satisfy the equation
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1 2 ri i i m+ + + =

m indistinguishable balls and r boxes

How many ways of placing m balls in r boxes ? 

Each placement gives a solution of the equation

0    +   1   +    0   +   3    +     1    +    2   =   7
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Placing balls in boxes

m balls   r-1 walls

Every arrangement of m balls and r-1 walls gives a 
unique placement of m balls into r boxes
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m+r-1 objects arranged in a row,  

m balls, r-1 walls

Number of choices of r-1 positions amongst m+r-1

1
1

m r
r

 + −     − 

1 2

Number of solutions of the equation

ri i i m+ + + =
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Properties of Binomial coefficients
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A messy proof
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A more elegant proof
1 1
1

n n n
k k k
     − −    + =           −     

Fix an element a of an n
element set

Number of k-element 
subsets that include a

Number of k-element 
subsets that do not include a

Total number of k-element 
subsets
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Pascal’s triangle
1 1
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What is the sum of numbers in the nth row of Pascal’s triangle ?

n
k
     0

n

k=
∑   2n=

Total number of subsets 
of n-element set

Number of k-element 
subsets of n-element set
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Binomial Theorem
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Proof of Binomial theorem
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Proofs using the binomial theorem

0

Substitute  in1 
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Proofs using the binomial theorem

0

Substitute  i1 
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Further identities
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How many distinct words can you obtain by permuting the 
letters of M I S S I S S I P P I ?

11 letters:  1 M,  4 I,  4 S,  2 P

M1 I1 S1 S2 I2 S3 S4 I3 P1 P2 I4

11! permutations

How many indexed words give you a particular unindexed word ?

e.g. S I P I S M S I P I S

4! ways to place indices of I

4! ways to place indices of S

2! ways to place indices of P

1! way for indices of M 

number of distinct 
11!

4!4

words

!2!1!
=
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Generalization

1 2

 objects of  different kinds
 indistinguishable objects of th kind

Then the total number of distinct arrangements is

i

m

n m
k i

k k k n+ + + =…

1 2, , , m

n
k k k
     …1 2

!
! ! !m

n
k k k…

Multinomial 
coefficient
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2          
,
n n

m
k n k k
     = =      −   

Multinomial theorem
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Inclusion-Exclusion principle

A B

Given |A|, |B|, |A B|, what is |A B| ?∩ ∪

 |A B| = |A| + |B| - |A B|∪ ∩
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Inclusion-Exclusion principle

A B

C
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Inclusion-Exclusion principle
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Proof of inclusion-exclusion principle

1 2Co
                 

nsider an elemen
    

t  nx A A A∈ ∪ ∪ ∪

Contribution to LHS = 1

What is the contribution to RHS ?

1 2

Suppose  belongs to  sets. 
Rename sets to , , ,be j

x j
A A A…

1 2

 appears in intersection of every 
-tuple of sets am ,o gst , ,n j

x
k A A A…
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Proof of inclusion-exclusion principle

1 2

 appears in intersection of every 
-tuple of sets am ,o gst , ,n j

x
k A A A…
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