COS 341 Discrete Mathematics

Counting

Administrative Issues

- Bookstore has run out of copies of textbook.
- Readings are now on web page.
- Readings for this week: Matousek and Nesetril, 2.1-2.6

Rolling dice

- Suppose I roll a white die and a black die
- Number of possible outcomes $=6 \times 6=36$
- How many outcomes where dice show different values ?

Different outcomes

- $S \equiv$ Set of all outcomes where the dice show different values
- $\mathrm{A}_{\mathrm{i}} \equiv$ set of outcomes where the black die says i and the white die says something else.

$$
|S|=\left|\bigcup_{i=1}^{6} A_{i}\right|=\sum_{i=1}^{6}\left|A_{i}\right|=\sum_{i=1}^{6} 5=30
$$

Different outcomes: take 2

- $S \equiv$ Set of all outcomes where the dice show different values
- $\mathrm{T} \equiv$ set of outcomes where dice agree.

$$
\begin{aligned}
& |S \cup T|=\text { \#of outcomes }=36 \\
& |S|+|T|=36 \quad|T|=6 \\
& |S|=36-6=30
\end{aligned}
$$

- How many outcomes where the black die says a smaller number than the white die?
- $\mathrm{A}_{\mathrm{i}} \equiv$ set of outcomes where the black die says i and the white die says something larger.

$$
\begin{aligned}
S & =A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \cup A_{5} \cup A_{6} \\
|S| & =5+4+3+2+1+0=15
\end{aligned}
$$

Another approach

- $\mathrm{S} \equiv$ Set of all outcomes where the black die shows a smaller number than the white die.
- $\mathrm{L} \equiv$ set of all outcomes where the black die shows a larger number than the white die.

$$
|S|+|L|=30
$$

- It is clear by symmetry that $|\mathrm{S}|=|\mathrm{L}|$.
- Therefore $|\mathrm{S}|=15$
- What do we mean by symmetry?
- To formalize this idea, we show a correspondence from S to L.
- We put each outcome in S in correspondence with an outcome in L by swapping the color of the dice.
black 2, white 5 is mapped to black 5 , white 2
- Each outcome in S matched with exactly one outcome in L, with none left over.
- Thus $|\mathrm{S}|=|\mathrm{L}|$
- Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ be a function from a set A to a set B .
- f is $1-1$ if and only if

$$
\forall x, y \in A, x \neq y \Rightarrow f(x) \neq f(y)
$$

- f is onto if and only if

$$
\forall \mathrm{z} \in \mathrm{~B} \quad \exists \mathrm{x} \in \mathrm{~A} \quad \mathrm{f}(\mathrm{x})=\mathrm{z}
$$

Mappings between finite sets

$$
\exists 1-1 \mathrm{f}: \mathrm{A} \rightarrow \mathrm{~B} \Rightarrow|\mathrm{~A}| \leq|\mathrm{B}|
$$

\exists onto $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B} \Rightarrow|\mathrm{A}| \geq|\mathrm{B}|$

$\exists 1-1$ onto $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B} \Rightarrow|\mathrm{A}|=|\mathrm{B}|$
1-1 onto correspondence

If you have a bijection between two sets, then they have the same size

Sets and Subsets

- $X=\{a, b, c\}$
- Subsets of X are $\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}$

$$
\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}, \varnothing
$$

- How many subsets does X have ?

Counting subsets

Theorem: Any n-element set X has exactly 2^{n} subsets

Proof: (by induction on size of X)

- For $X=\varnothing, \varnothing$ is the only subset The statement holds for $\mathrm{n}=0$
- Suppose the statement holds for $\mathrm{n}=\mathrm{k}$
- Consider a set X of size $k+1$

Fix an element $a \in X$
Divide the subsets of X into two classes

Two classes

Consider a set X of size $\mathrm{k}+1$

Fix an element $a \in X$
Divide the subsets of X into two classes

Second class has 2^{k} subsets.
Bijection from first class to second class
Map subset S to $\mathrm{S} \backslash\{\mathrm{a}\}$

Finishing up

- Both classes have the same size.
- Second class has size 2^{k}
- Total number of subsets of $X=2^{k}+2^{k}=2^{k+1}$
- Statement true by induction.

An alternate proof

Map subsets to bit sequences
$X=\{a, b, c, d, e\}, \quad$ subset $\{b, d, e\}$

\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
0	1	0	1	1

In general, for set $X=\left\{x_{1} x_{2} x_{3} \ldots x_{n}\right\}$

$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	\cdots	$\mathbf{x}_{\mathbf{n}}$
b_{1}	$\mathrm{~b}_{2}$	$\mathrm{~b}_{3}$	\cdots	$\mathrm{~b}_{\mathrm{n}}$

Subsets and bit sequences

$$
f(S)=b
$$

- Bijection between subsets of an n element set and bit sequences of length n
- f is $1-1$
- f is onto
- Number of bit sequences of length n is 2^{n}
- Number of subsets of an n element set is 2^{n}

Odd and even

- Consider an n element set X
- How many subsets of odd size does X have ?
- Fix an element $a \in X$
- Bijection between odd subsets of X and subsets of $X \backslash\{a\}$

Hence number of odd subsets is exactly 2^{n-1}

Why is this correct?

Can two different odd subsets map to the same subset of $\mathrm{X} \backslash\{\mathrm{a}\}$?

Counting with choices

- We want to count the number of objects in a set
- We give a process to select an object in the set by making a sequence of choices
- Each distinct sequence of choices leads to an object in the set
- Each object in the set can be produced by exactly one sequence of choices
- Suppose there are P_{1} possibilities for 1st choice,
P_{2} possibilities for $2^{\text {nd }}$ choice,
$\ldots P_{n}$ possibilities for $n^{\text {th }}$ choice
- Then there are $P_{1} \times P_{2} \times \ldots \times P_{n}$ objects in the set

Ordering a deck of cards

- How many different orderings of a deck of cards ?
- 52 choices for the $1^{\text {st }}$ card
- 51 choices for the $2^{\text {nd }}$ card
- 50 choices for the $3^{\text {rd }}$ card
- 1 choice for the $52^{\text {nd }}$ card
- Number of orderings $=52 \times 51 \times 50 \times \ldots \times 1$

$$
\begin{aligned}
= & 52! \\
& (52 \text { factorial })
\end{aligned}
$$

Permutations

- A permutation or an arrangement of n objects is an ordering of the objects.
- The number of permutations of n distinct objects is n !

Permutations of r out of n

- The number of ways of ordering, permuting, or arranging r out of n objects.
- n choices for first place, $\mathrm{n}-1$ choices for second place, . . .
- $\mathrm{n} \times(\mathrm{n}-1) \times(\mathrm{n}-2) \times \ldots \times(\mathrm{n}-(\mathrm{r}-1))$

$$
=\frac{n!}{(n-r)!}
$$

- How many sequences of 5 letters contain at least two of the same letter?

Counting the opposite

- How many sequences of 5 letters contain at least two of the same letter?
$=$ no. 5-letter sequences
- no. 5-letter sequences with all letters distinct

$$
=26^{5}-26 \times 25 \times 24 \times 23 \times 22
$$

Ordered Versus Unordered

From a deck of 52 cards how many ordered pairs can be formed?
-52×51

How many unordered pairs?

- $52 \times 51 / 2 \leqslant$ divide by overcount

Each unordered pair is listed twice on a list of the ordered pairs, but we consider the ordered pairs to be the same.

Ordered Versus Unordered

- From a deck of 52 cards how many ordered 5 card sequences can be formed?
$-52 \times 51 \times 50 \times 49 \times 48$
- How many orderings of 5 cards?
- 5!
- How many unordered 5 card hands?

$$
52 \times 51 \times 50 \times 49 \times 48 / 5!=2,598,960
$$

A combination or choice of r out of n objects is an (unordered) set of r of the n objects.

- The number of r combinations of n objects:

$$
\frac{n!}{r!(n-r)!}=\binom{n}{r}
$$

n choose r

