Graph Theory: Matchings and Hall’s Theorem

COS 341 Fall 2002, lecture 19

Definition 1 A matching M in a graph $G(V, E)$ is a subset of the edge set E such that no two edges in M are incident on the same vertex.

The size of a matching M is the number of edges in M. For a graph $G(V, E)$, a matching of maximum size is called a maximum matching.

Definition 2 If M is a matching in a graph G, a vertex v is said to be M-saturated if there is an edge in M incident on v. Vertex v is said to be M-unsaturated if there is no edge in M incident on v.

If $G(V_1, V_2, E)$ is a bipartite graph than a matching M of G that saturates all the vertices in V_1 is called a complete matching.

Definition 3 Given a matching M in graph G, an M-alternating path (cycle) is a path (cycle) in G whose edges are alternately in M and outside of M (i.e. if an edge of the path is in M, the next edge is outside M and vice versa). An M-alternating path whose end vertices are M-unsaturated is called an M-augmenting path.

Lemma 1 If M is a maximum matching in a graph $G(V, E)$, there can be no M-augmenting paths in G.

Proof: Assume, for contradiction, that there exists an M-augmenting path P. Then we can flip the edges of P to obtain a new matching by removing the edges of $P \cap M$ and adding the edges of $P \cap \overline{M}$. More formally, we set $M' = M \cup (P \cap \overline{M}) \setminus (P \cap M)$. It is easy to verify that M' is indeed a valid matching in G. Further, $|M'| = |M| + 1$. This contradicts the fact that M is a maximum matching.

Given a bipartite graph $G(V_1, V_2, E)$, and a subset of vertices $S \subseteq V_1$, the neighborhood $N(S)$ is the subset of vertices of V_2 that are adjacent to some vertex in S, i.e.

$$N(S) = \{ v \in V_2 : \exists u \in S, (u, v) \in E \}$$

Theorem 1 (Hall’s Theorem) Let $G(V_1, V_2, E)$ be a bipartite graph with $|V_1| \leq |V_2|$. Then G has a complete matching saturating every vertex of V_1 iff $|S| \leq |N(S)|$ for every subset $S \subseteq V_1$.

1
Proof: First we prove that the condition of the theorem is necessary. If G has a complete matching M and S is any subset of V_1, every vertex in S is matched by M into a different vertex in $N(S)$, so that $|S| \leq |N(S)|$.

Now we prove that the condition is sufficient. Suppose that $|S| \leq |N(S)|$ for every subset $S \subseteq V_1$. Assume for contradiction that G has no complete matching. Let M be a maximum matching, i.e. a matching that saturates the maximum number of vertices in V_1. Since M is not complete, there exists an M-unsaturated vertex s in V_1. Let Z be the set of vertices of G reachable from s by M-alternating paths. Since M is a maximum matching, there are no M-augmenting paths among these (by Lemma 1). Let $S = Z \cap V_1$ and $T = Z \cap V_2$. Then, every vertex of T is matched under M to some vertex of $S - \{s\}$ and every vertex of $S - \{s\}$ is matched under M to some vertex of T. Thus $|T| = |S| - 1$. Also, $T = N(S)$. Thus S is a subset of V_1 such that $|N(S)| = |S| - 1$, giving a contradiction. This proves the reverse direction.

\[\blacksquare\]