COS 341 - Discrete Math

Office Hours

- Currently, my office hours are on Friday, from 2:30 to 3:30.

Office Hours

- Currently, my office hours are on Friday, from 2:30 to 3:30.
- Nobody seems to care.
- Change office hours? Tuesday, 8 PM to 9 PM.

Homework 8

- Due on Wednesday at the beginning of class.
- No collaboration!
- Question 3:
- "Never crosses itself" is the key.
- Question 4:
- Assume $n>4$ (the theorem is not true for $n=4$).
- For some values of $n>4$, the bound may not be an integer. It doesn't matter (the number of crossings will be strictly greater than that).

From last class

- Jordan curve theorem:
- Any Jordan curve divides the plane into two parts, the interior and the exterior.
- K_{5} is not planar.
- $\mathrm{K}_{3,3}$ is not planar.

2-Connected Graphs

- Recall that a graph is 2 -connected if it has at least 3 vertices, and by deleting any single vertex we obtain a connected graph.
- We also know the following:
- A graph G is 2-connected if and only if it can be created from a triangle (K_{3}) by a sequence of edge subdivisions and edge insertions.

Faces and Cycles

- Theorem:
- Let G be a 2-vertex-connected planar graph. Then every face in any planar drawing of G is a region of some cycle of G.

Faces and Cycles

- Theorem:
- Let G be a 2-vertex-connected planar graph. Then every face in any planar drawing of G is a region of some cycle of G.

(We do need it to be 2-vertex-connected.)

Faces and Cycles

- Proof: by induction on n (number of vertices)
- Base case: $n=3$
- only 2 -connected graph is the triangle
- one cycle, two regions: OK.
- Hypothesis: assume true for $n=n_{o}-1$, with $n_{0}>3$.
- Let's prove it is true for $n=n_{o}$.
- 2 -connected graph G with at least 4 vertices.

Faces and Cycles

- Take a planar 2-connected graph G with $n>3$ vertices.
- Can be built from a triangle by a sequence of edge insertions and subdivisions.
- One of these must be true:
(a) There is an edge e such that $G^{\prime}=G-e$ is 2-connected.
(b) There is a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ and there is an edge e^{\prime} in E^{\prime} such that the subdivision of e^{\prime} creates G.
- In either case, G^{\prime} is a smaller 2-connected graph.
- By the inductive hypothesis, every face in any planar drawing of G^{\prime} is a region of some cycle of G^{\prime}.

Faces and Cycles

- Case (a): there is an edge e such that $G^{\prime}=G-e$ is 2-connected.
- Let $e=\{v, w\}$.
- There is a face F in G^{\prime} corresponding to a cycle that contains both v and w.
$-v-\alpha_{1}-w-\alpha_{2}-v\left(\alpha_{1}\right.$ and α_{2} are arcs in the cycle $)$
- The arc corresponding to e divides F into two faces, each corresponding to a different cycle.

$$
\begin{aligned}
& -v-\alpha_{1}-w-\alpha(e)-v \\
& -v-e-w-\alpha_{2}-v
\end{aligned}
$$

11

Faces and Cycles

- Case (b): there is a graph $G^{\prime}=\left(V, E^{\prime}\right)$ with an edge $e^{,}$ in E^{\prime} such that the subdivision of e^{\prime} creates G.
- Each face of G^{\prime} is a region of some cycle G^{\prime}.
- Subdividing e ' amounts to drawing a vertex inside the edge.
- This extends the length of the cycles e ' participates in, but doesn't change the property.

Combinatorial Characterization

Combinatorial Characterization

- Every subgraph of a planar graph must be planar:
- cannot contain K_{5}
- cannot contain $K_{3,3}$
- More generally: no subgraph of a planar graph can be a subdivision of a non-planar graph.
- cannot contain a subdivision of K_{5}
- cannot contain a subdivision of $K_{3,3}$

Combinatorial Characterization

- Every subgraph of a planar graph must be planar:
- cannot contain K_{5}
- cannot contain $K_{3,3}$

Combinatorial Characterization

- Every subgraph of a planar graph must be planar:
- cannot contain K_{5}
- cannot contain $K_{3,3}$
- More generally: no subgraph of a planar graph can be a subdivision of a non-planar graph.
- cannot contain a subdivision of K_{5}
- cannot contain a subdivision of $K_{3,3}$
- Is that enough?

Combinatorial Characterization

- Kuratowski's theorem:
- A graph G is planar if and only if it has no subgraph isomorphic to a subdivision of $K_{3,3}$ or to a subdivision of K_{5}.
- We can test if a graph is planar without actually drawing it:
- we just have to verify if there are violating subgraphs.
- (There are faster ways of testing planarity, though.)

Euler's Formula

- Proof by induction on $|E|$.
- Base case: $|E|=0$ (single vertex, single face):

$$
|V|-|E|+f=1-0+1=2
$$

$-|E|>0$ and G does not contain a cycle (it's a tree):

$$
|V|-|E|+f=|V|-(|V|-1)+1=2 .
$$

$-|E|>0$ and $G=(V, E)$ contains a cycle:

- Some edge e belongs to a cycle; remove it.
- The resulting graph G^{\prime} obeys the formula: $\left|V^{\prime}\right|-\left|E^{\prime}\right|+f^{\prime}=2$ - Clearly, $\left|\mathrm{V}^{\prime}\right|=|\mathrm{V}|$ and $\left|\mathrm{E}^{\prime}\right|=|\mathrm{E}|-1$.
- e was adjacent to two faces (by Jordan) that become one: $f^{\prime}=f-1$
$\left|V^{\prime}\right|-\left|E^{\prime}\right|+f^{\prime}=2$
$|V|-(|E|-1)+(f-1)=|\mathrm{V}|-|\mathrm{E}|+f=2$.

Euler's Formula

- Theorem:
- Let $G=(V, E)$ be a connected planar graph, and let f be the number of faces of any planar drawing of G. Then

$$
|V|-|E|+f=2 .
$$

- The number of faces does not depend on the (planar) drawing, just on the graph itself.

Regular Polytopes

- 3-dimensional convex bodies;
- finite number of faces;
- faces are congruent copies of the same regular polygon;
- same number of faces meet at each vertex;
- also known as Platonic Solids.

Regular Polytopes

- Tetrahedron: 4 faces
- Hexahedron (a.k.a. cube): 6 faces
- Octahedron: 8 faces
- Dodecahedron: 12 faces
- Icosahedron: 20 faces
- Are there more?
[images from mathworld.wolfram.com]

Regular Polytopes

- Every convex polytope can be converted to a planar graph:
- Find a sphere such that:
- center of sphere inside polytope;
- sphere contains the whole polytope.
- Project the polytope onto the sphere:
- we get a graph of the surface of a sphere;
- that graph can be converted to a planar graph with a stereographic projection.
- Vertices, faces, and edges of the polytope become vertices, faces, and edges of a planar graph.

Regular Polytopes

- Tetrahedron

A

- Cube

Regular Polytopes

- Octahedron

25

Regular Polytopes

- Icosahedron

Regular Polytopes

- Parameters of a regular convex polytope:
$-k$: number of sides in each polygon (face)
- d : number of faces that meet at each vertex
- n : vertices
- m: edges
$-f$: faces
- Looking at the vertices:
- Every edge appears in exactly two vertices:

$$
\begin{aligned}
& d n=2 m \\
& n=2 m / d
\end{aligned}
$$

Regular Polytopes

- Parameters of a regular convex polytopes:
- k : number of sides in each face
$-d$: number of faces that meet at each vertex
- n : vertices
- m : edges
$-f$: faces
- Looking at the faces:
- Every edge appears in exactly two faces:

$$
\begin{gathered}
k f=2 m \\
f=2 m / k
\end{gathered}
$$

Regular Polytopes

- So we have:

$$
\begin{gathered}
f=2 m / k \\
n=2 m / d \\
n-m+f=2
\end{gathered}
$$

- Substituting n and f in the third equation:

$$
\begin{gathered}
n-m+f=2 \\
2 m / d-m+2 m / k=2
\end{gathered}
$$

(dividing by $2 m$ and rearranging...)

$$
\frac{1}{d}+\frac{1}{k}=\frac{1}{2}+\frac{1}{m}
$$

Regular Polytopes

- Parameters of a regular convex polytopes:
$-k$: number of sides in each face
$-d$: number of faces that meet at each vertex
- n : vertices
- m : edges
$-f$: faces
- Looking at the whole graph:
- It is planar, so we can apply Euler's formula:

$$
n-m+f=2
$$

Regular Polytopes

- So every regular polytope must obey $\frac{1}{d}+\frac{1}{k}=\frac{1}{2}+\frac{1}{m}$
- In particular,

$$
\frac{1}{d}+\frac{1}{k}>\frac{1}{2}
$$

- If both $d \geq 4$ and $k \geq 4$, we would have:

$$
\frac{1}{d}+\frac{1}{k} \leq \frac{1}{2}
$$

- Se either $d=3$ or $k=3$ (or both).

Regular Polytopes

- Assume $d=3$:

$$
\begin{aligned}
& \frac{1}{d}+\frac{1}{k}=\frac{1}{2}+\frac{1}{m} \\
& \frac{1}{3}+\frac{1}{k}=\frac{1}{2}+\frac{1}{m} \\
& \frac{1}{k}-\frac{1}{6}=\frac{1}{m}
\end{aligned}
$$

- The right-hand side is positive, so $k<6$.
- $k=\{3,4,5\}$

Regular Polytopes

- So the only possibilities are:

d	k	n	m	f	Polytope
3	3	4	6	4	tetrahedron
3	4	8	12	6	cube
3	5	20	30	12	dodecahedron
4	3	6	12	8	octahedron
5	3	12	30	20	icosahedron

Regular Polytopes

- Assume $k=3$:

$$
\begin{aligned}
& \frac{1}{d}+\frac{1}{k}=\frac{1}{2}+\frac{1}{m} \\
& \frac{1}{d}+\frac{1}{3}=\frac{1}{2}+\frac{1}{m} \\
& \frac{1}{d}-\frac{1}{6}=\frac{1}{m}
\end{aligned}
$$

- The right-hand side is positive, so $d<6$.
- $d=\{3,4,5\}$

Number of Edges

- Theorem:
- Let $G=(V, E)$ be a planar graph with at least 3 vertices. Then $|E| \leq 3|V|-6$.
- If the graph is maximal (no edge can be added without violating planarity), the equality holds: $|E|=3|V|-6$.
- It suffices to prove the second statement; if the graph is not maximal, we can always add edges until it becomes one.

Number of Edges

- Lemma:
- Every maximal planar graph G is a triangulation (every face is a triangle).
- Proof: we show that if G is not a triangulation, it is always possible to add an edge without violating planarity.
- Three cases to consider:
- G is disconnected.
- If G is connected but not 2-connected.
- G is 2-connected.

Number of Edges

- Case 1: G is not connected:
- An edge can be added between two components.

Number of Edges

- Case 2: G is connected, but not 2-connected:
- There is a vertex v whose removal disconnects G.
- Let $V_{1}, V_{2}, \ldots, V_{\mathrm{k}}$ be the resulting components ($k>2$).
- An edge can be added between components associated with edges drawn next to each other around v.

Number of Edges

- Case 2: G is connected, but not 2-connected:
- There is a vertex v whose removal disconnects G.
- Let $V_{1}, V_{2}, \ldots, V_{\mathrm{k}}$ be the resulting components ($k>2$).
- An edge can be added between components associated with edges drawn next to each other around v.

Number of Edges

- Case 3: G is 2-connected.
- Every face is bounded by a cycle.
- Take any face with 4 or more edges:

- If v_{1} and v_{3} are not connected, you can add an edge between them.

Number of Edges

- Case 3: G is 2-connected.
- Every face is bounded by a cycle.
- Take any face with 4 or more edges:

Number of Edges

- Case 3: G is 2-connected.
- Every face is bounded by a cycle.
- Take any face with 4 or more edges:

- If v_{1} and v_{3} are connected, v_{2} and v_{4} can't be.
- So you can add an edge between v_{2} and v_{4}.

Number of Edges

- So every maximal planar graph is a triangulation.
- Because every face is a triangle and every edge is incident to exactly two faces, we have:

$$
\begin{gathered}
3 f=2|E| \\
f=2|E| / 3 .
\end{gathered}
$$

- Using this value in Euler's formula:

$$
\begin{gathered}
|V|-|E|+f=2 \\
|V|-|E|+2|E| 3=2 \\
|V|-|E| 3=2 \\
|E|=3|V|-6 .
\end{gathered}
$$

- Corollary: there exists a vertex of degree at most 5 .

Triangle-Free Planar Graphs

- Assume G is connected, but not 2-connected.
- There is a vertex v whose removal disconnects G.
- Let $V_{1}, V_{2}, \ldots, V_{\mathrm{k}}$ be the resulting components ($k>2$).
- Edges can be added between these components without violating planarity.
- But we could create a triangle if we joined vertices that are adjancent to v.
- If every V_{i} is a single vertex, then G is a tree:

$$
\begin{aligned}
& |E|=|V|-1 \\
& |E|=|V|+3-4 \\
& |E| \leq|V|+|V|-4 \quad \text { (because } G \text { has at least three vertices) } \\
& |E| \leq 2|V|-4 \quad \text { (the inequality holds) }
\end{aligned}
$$

Triangle-Free Planar Graphs

- Theorem:
- Let $G=(V, E)$ be a planar graph with no triangles (i.e., without K_{3} as a subgraph) and at least 3 vertices. Then $|E| \leq 2|V|-4$.
- Proof (similar to the previous one)
- Consider a maximal triangle-free planar graph G;
- we can always add edges until it becomes one.
- G is clearly connected.

Triangle-Free Planar Graphs

- Now consider the case in which component V_{1} has at least two vertices.
- Consider a face F having both a vertex of V_{1} and a vertex of some other V_{i} on its boundary.
- V_{1} must have at least one edge $\left\{v_{1}, v_{2}\right\}$ on the boundary of F.
- We can't have both v_{1} and v_{2} connected to v (or these vertices would constitute a triangle).
- So an edge can be added between one of these vertices and a vertex in V_{i}.
- G is not maximal - a contradiction.
- Maximal triangle-free planar graphs must be 2-connected.

Triangle-Free Planar Graphs

- G is a 2-connected, maximal triangle-free planar graph.
- 2-connected:
- every face is a region of a cycle.
- Triangle-free:
- every cycle has at least 4 edges.
- Counting edges from faces: $2|\mathrm{E}| \geq 4 f \Rightarrow f \leq|E| / 2$
- From Euler's formula:

$$
\begin{gathered}
|V|-|E|+f=2 \\
2-|V|+|E|=f \leq|E| / 2 \\
|E| \leq 2|V|-4 .
\end{gathered}
$$

- Corollary: there exists a vertex of degree at most 3 .

Scores of Planar Graphs

- Why is this relevant?
- We can rewrite

$$
\sum_{i \geq 1}(6-i) n_{i}=12+2 \sum_{j \geq 3}(j-3) f_{j} .
$$

as

$$
5 n_{1}+4 n_{2}+3 n_{3}+2 n_{2}+n_{1}+(\ldots)=12+(\ldots)
$$

- The first "(...)" contains only negative terms.
- The second "(...)" contains only positive terms.
- So $5 n_{1}+4 n_{2}+3 n_{3}+2 n_{2}+n_{1} \geq 12$.
- Among other things, this means that there are at least 3 vertices of degree at most 5 in every planar graph.

Scores of Planar Graphs

- Theorem:
- Let $G=(V, E)$ be a 2-connected planar graph with at least 3 vertices. Define:
- n_{i} : number of vertices of degree i;
- f_{i} : number of faces (in some fixed drawing of G) bounded by cycles of length i.
Then we have

$$
\sum_{i \geq 1}(6-i) n_{i}=12+2 \sum_{j \geq 3}(j-3) f_{j} .
$$

Scores of Planar Graphs

- Proof of the theorem:
- Obvious facts:

$$
f=\sum_{j} f_{j} \quad \text { and } \quad|V|=\sum_{i} n_{i}
$$

- From Euler's formula:

$$
\begin{gathered}
|V|-|E|+f=2 \\
\sum_{i} n_{i}-|E|+\sum_{j} f_{j}=2 \\
2|E|=\sum_{i} 2 n_{i}+\sum_{j} 2 f_{j}-4
\end{gathered}
$$

Scores of Planar Graphs

- Proof of the theorem:
- From previous slide: $2|E|=\sum_{i} 2 n_{i}+\sum_{j} 2 f_{j}-4$
- Counting edges from the faces:

$$
\begin{gathered}
\sum_{j}\left(j \cdot f_{j}\right)=2|E|=\sum_{i} 2 n_{i}+\sum_{j} 2 f_{j}-4 \\
\sum_{j}\left(j \cdot f_{j}\right)-\sum_{j} 2 f_{j}+4=\sum_{i} 2 n_{i} \\
\sum_{j}(j-2) f_{j}+4=\sum_{i} 2 n_{i}
\end{gathered}
$$

- Counting edges from the vertices:

$$
\begin{gathered}
\sum_{i}\left(i \cdot n_{i}\right)=2|E|=\sum_{i} 2 n_{i}+\sum_{j} 2 f_{j}-4 \\
\sum_{j} 2 f_{j}=\sum_{i}\left(i \cdot n_{i}\right)-\sum_{i} 2 n_{i}+4 \\
\sum_{j} 2 f_{j}=\sum_{i} n_{i}(i-2)+4
\end{gathered}
$$

Scores of Planar Graphs

- Proof of the theorem:
- From the previous slide:

$$
\begin{align*}
\sum_{j}(j-2) f_{j}+4 & =\sum_{i} 2 n_{i} \quad(\times 2) \\
\sum_{j}\left(2 j \cdot f_{j}-4 f_{j}\right)+8 & =\sum_{i} 4 n_{i} \\
\sum_{j} 2 f_{j} & =\sum_{i} n_{i}(i-2)+4 \quad(\times(-1)) \\
\sum_{j}(-2) f_{j} & =\sum_{i}\left(2 n_{i}-i \cdot n_{i}\right)-4 \tag{ii}
\end{align*}
$$

- Adding (i) and (ii), we get the final expression:

$$
\begin{aligned}
\sum_{j}\left(2 j \cdot f_{j}-4 f_{j}-2 f_{j}\right)+8 & =\sum_{i}\left(4 n_{i}+2 n_{i}-i \cdot n_{i}\right)-4 \\
2 \sum_{j}(j-3) f_{j}+12 & =\sum_{i}(6-i) n_{i}
\end{aligned}
$$

