COS 341 – Discrete Math

1

Office Hours

• Currently, my office hours are on Friday, from 2:30 to 3:30.

Office Hours

- Currently, my office hours are on Friday, from 2:30 to 3:30.
- Nobody seems to care.
- Change office hours? Tuesday, 8 PM to 9 PM.

Homework 8

- Due on Wednesday at the beginning of class.
- No collaboration!

- Question 3:
 - "Never crosses itself" is the key.
- Question 4:
 - Assume n > 4 (the theorem is not true for n=4).
 - For some values of n > 4, the bound may not be an integer. It doesn't matter (the number of crossings will be strictly greater than that).

From last class

- Jordan curve theorem:
 - Any Jordan curve divides the plane into two parts, the *interior* and the *exterior*.
- K₅ is not planar.
- K_{3,3} is not planar.

2-Connected Graphs

Recall that a graph is 2-connected if it has at least 3 vertices, and by deleting any single vertex we obtain a connected graph.

- We also know the following:
 - A graph G is 2-connected if and only if it can be created from a triangle (K_3) by a sequence of edge subdivisions and edge insertions.

- Theorem:
 - Let G be a 2-vertex-connected planar graph. Then every face in any planar drawing of G is a region of some cycle of G.

- Theorem:
 - Let G be a 2-vertex-connected planar graph. Then every face in any planar drawing of G is a region of some cycle of G.

(We do need it to be 2-vertex-connected.)

- Proof: by induction on *n* (number of vertices)
 - Base case: n = 3
 - only 2-connected graph is the triangle
 - one cycle, two regions: OK.
 - Hypothesis: assume true for $n = n_o 1$, with $n_0 > 3$.
 - Let's prove it is true for $n = n_o$.
 - 2-connected graph G with at least 4 vertices.

- Take a planar 2-connected graph G with n > 3 vertices.
- Can be built from a triangle by a sequence of edge insertions and subdivisions.
- One of these must be true:

(a) There is an edge *e* such that G' = G - e is 2-connected.

(b) There is a graph G' = (V', E') and there is an edge e' in E' such that the subdivision of e' creates G.

- In either case, G' is a smaller 2-connected graph.
 - By the inductive hypothesis, every face in any planar drawing of *G*' is a region of some cycle of *G*'.

- Case (a): there is an edge *e* such that G' = G e is 2-connected.
 - Let $e = \{v, w\}$.
 - There is a face *F* in *G*' corresponding to a cycle that contains both *v* and *w*.

 $-v - \alpha_1 - w - \alpha_2 - v$ (α_1 and α_2 are arcs in the cycle)

• The arc corresponding to *e* divides *F* into two faces, each corresponding to a different cycle.

11

- Case (b): there is a graph G' = (V, E') with an edge e' in E' such that the subdivision of e' creates G.
 - Each face of G' is a region of some cycle G'.
 - Subdividing *e*' amounts to drawing a vertex inside the edge.
 - This extends the length of the cycles *e*' participates in, but doesn't change the property.

- Every subgraph of a planar graph must be planar:
 - cannot contain K_5
 - cannot contain $K_{3,3}$

- Every subgraph of a planar graph must be planar:
 - cannot contain K_5
 - cannot contain $K_{3,3}$
- More generally: no subgraph of a planar graph can be a subdivision of a non-planar graph.
 - cannot contain a subdivision of K_5
 - cannot contain a subdivision of $K_{3,3}$

- Every subgraph of a planar graph must be planar:
 - cannot contain K_5
 - cannot contain $K_{3,3}$
- More generally: no subgraph of a planar graph can be a subdivision of a non-planar graph.
 - cannot contain a subdivision of K_5
 - cannot contain a subdivision of $K_{3,3}$
- Is that enough?

- Kuratowski's theorem:
 - A graph G is planar if and only if it has no subgraph isomorphic to a subdivision of $K_{3,3}$ or to a subdivision of K_5 .
- We can test if a graph is planar without actually drawing it:
 - we just have to verify if there are violating subgraphs.
 - (There are faster ways of testing planarity, though.)

Euler's Formula

- Theorem:
 - Let G = (V, E) be a connected planar graph, and let f be the number of faces of any planar drawing of G. Then

$$V|-|E|+f=2.$$

• The number of faces does not depend on the (planar) drawing, just on the graph itself.

Euler's Formula

- Proof by induction on |E|.
 - Base case: |E| = 0 (single vertex, single face): |V| - |E| + f = 1 - 0 + 1 = 2.
 - -|E| > 0 and *G* does not contain a cycle (it's a tree): |V| - |E| + f = |V| - (|V| - 1) + 1 = 2.
 - -|E| > 0 and G = (V, E) contains a cycle:
 - Some edge *e* belongs to a cycle; remove it.
 - The resulting graph G' obeys the formula: |V'| |E'| + f' = 2- Clearly, |V'| = |V| and |E'| = |E| - 1.
 - -e was adjacent to two faces (by Jordan) that become one: f' = f 1

$$|V'| - |E'| + f' = 2$$

|V| - (|E| - 1) + (f - 1) = |V| - |E| + f = 2.

- 3-dimensional convex bodies;
- finite number of faces;
- faces are congruent copies of the same regular polygon;
- same number of faces meet at each vertex;
- also known as *Platonic Solids*.

- Tetrahedron: 4 faces
- Hexahedron (a.k.a. cube): 6 faces
- Octahedron: 8 faces
- Dodecahedron: 12 faces
- Icosahedron: 20 faces

• Are there more?

[images from mathworld.wolfram.com]

- Every convex polytope can be converted to a planar graph:
 - Find a sphere such that:
 - center of sphere inside polytope;
 - sphere contains the whole polytope.
 - Project the polytope onto the sphere:
 - we get a graph of the surface of a sphere;
 - that graph can be converted to a planar graph with a stereographic projection.
 - Vertices, faces, and edges of the polytope become vertices, faces, and edges of a planar graph.

• Tetrahedron

• Octahedron

• Icosahedron

- Parameters of a regular convex polytope:
 - -k: number of sides in each polygon (face)
 - -d: number of faces that meet at each vertex
 - -n: vertices
 - -m: edges
 - -f: faces
- Looking at the vertices:
 - Every edge appears in exactly two vertices:

$$dn = 2m$$
$$n = 2m/d$$

- Parameters of a regular convex polytopes:
 - -k: number of sides in each face
 - -d: number of faces that meet at each vertex
 - -n: vertices
 - -m: edges
 - -f: faces
- Looking at the faces:

- Every edge appears in exactly two faces:

$$kf = 2m$$
$$f = 2m/k$$

- Parameters of a regular convex polytopes:
 - -k: number of sides in each face
 - -d: number of faces that meet at each vertex
 - -n: vertices
 - -m: edges
 - -f: faces
- Looking at the whole graph:

- It is planar, so we can apply Euler's formula:

$$n-m+f=2$$

• So we have:

$$f = 2m/k$$
$$n = 2m/d$$
$$n - m + f = 2$$

• Substituting *n* and *f* in the third equation:

$$n - m + f = 2$$

$$2m/d - m + 2m/k = 2$$

(dividing by 2m and rearranging...)

$$\frac{1}{d} + \frac{1}{k} = \frac{1}{2} + \frac{1}{m}$$

- So every regular polytope must obey $\frac{1}{d} + \frac{1}{k} = \frac{1}{2} + \frac{1}{m}$
- In particular,

$$\frac{1}{d} + \frac{1}{k} > \frac{1}{2}$$

- If both $d \ge 4$ and $k \ge 4$, we would have: $\frac{1}{d} + \frac{1}{k} \le \frac{1}{2}$
- Se either d=3 or k=3 (or both).

• Assume d=3:

- The right-hand side is positive, so k < 6.
- $k = \{3, 4, 5\}$

• Assume k=3:

- The right-hand side is positive, so d < 6.
- $d = \{3, 4, 5\}$

• So the only possibilities are:

d	k	п	т	f	Polytope
3	3	4	6	4	tetrahedron
3	4	8	12	6	cube
3	5	20	30	12	dodecahedron
4	3	6	12	8	octahedron
5	3	12	30	20	icosahedron

- Theorem:
 - Let G = (V, E) be a planar graph with at least 3 vertices. Then $|E| \le 3|V| 6$.
 - If the graph is maximal (no edge can be added without violating planarity), the equality holds: |E| = 3|V| 6.

• It suffices to prove the second statement; if the graph is not maximal, we can always add edges until it becomes one.

- Lemma:
 - Every maximal planar graph G is a triangulation (every face is a triangle).
- Proof: we show that if *G* is not a triangulation, it is always possible to add an edge without violating planarity.
 - Three cases to consider:
 - G is disconnected.
 - If G is connected but not 2-connected.
 - G is 2-connected.

- Case 1: *G* is not connected:
 - An edge can be added between two components.

- Case 1: *G* is not connected:
 - An edge can be added between two components.

- Case 2: *G* is connected, but not 2-connected:
 - There is a vertex v whose removal disconnects G.
 - Let V_1 , V_2 , ..., V_k be the resulting components (k > 2).
 - An edge can be added between components associated with edges drawn next to each other around *v*.

- Case 2: *G* is connected, but not 2-connected:
 - There is a vertex v whose removal disconnects G.
 - Let V_1 , V_2 , ..., V_k be the resulting components (k > 2).
 - An edge can be added between components associated with edges drawn next to each other around v.

- Case 3: *G* is 2-connected.
 - Every face is bounded by a cycle.
 - Take any face with 4 or more edges:

- Case 3: *G* is 2-connected.
 - Every face is bounded by a cycle.
 - Take any face with 4 or more edges:

- If v_1 and v_3 are not connected, you can add an edge between them.

- Case 3: *G* is 2-connected.
 - Every face is bounded by a cycle.
 - Take any face with 4 or more edges:

- If v_1 and v_3 are connected, v_2 and v_4 can't be. - So you can add an edge between v_2 and v_4 .

- So every maximal planar graph is a triangulation.
 - Because every face is a triangle and every edge is incident to exactly two faces, we have:

$$3f = 2|E|$$
$$f = 2|E|/3.$$

– Using this value in Euler's formula:

$$|V| - |E| + f = 2$$
$$|V| - |E| + 2|E|/3 = 2$$
$$|V| - |E|/3 = 2$$
$$|E| = 3|V| - 6.$$

– Corollary: there exists a vertex of degree at most 5.

- Theorem:
 - Let G=(V,E) be a planar graph with no triangles (i.e., without K_3 as a subgraph) and at least 3 vertices. Then $|E| \leq 2|V| 4$.
- Proof (similar to the previous one)
 - Consider a maximal triangle-free planar graph G;
 - we can always add edges until it becomes one.
 - -G is clearly connected.

- Assume G is connected, but not 2-connected.
- There is a vertex v whose removal disconnects G.
- Let V_1 , V_2 , ..., V_k be the resulting components (k > 2).
 - Edges can be added between these components without violating planarity.
 - But we could create a triangle if we joined vertices that are adjancent to *v*.
- If every V_i is a single vertex, then G is a tree:

$$|E| = |V| - 1$$

$$|E| = |V| + 3 - 4$$

$$|E| \le |V| + |V| - 4 \text{ (because } G \text{ has at least three vertices)}$$

$$|E| \le 2|V| - 4 \text{ (the inequality holds)}$$

- Now consider the case in which component V_1 has at least two vertices.
- Consider a face F having both a vertex of V_1 and a vertex of some other V_i on its boundary.
- $-V_1$ must have at least one edge $\{v_1, v_2\}$ on the boundary of *F*.
- We can't have both v_1 and v_2 connected to v (or these vertices would constitute a triangle).
- So an edge can be added between one of these vertices and a vertex in V_{i} .
 - *G* is not maximal a contradiction.
 - Maximal triangle-free planar graphs must be 2-connected.

- -G is a 2-connected, maximal triangle-free planar graph.
- 2-connected:
 - every face is a region of a cycle.
- Triangle-free:
 - every cycle has at least 4 edges.
- Counting edges from faces: 2 $|E| \ge 4f \Rightarrow f \le |E|/2$
- From Euler's formula:

$$|V| - |E| + f = 2$$

2 - |V| + |E| = f \le |E|/2
|E| \le 2|V| - 4.

– Corollary: there exists a vertex of degree at most 3.

- Theorem:
 - -Let G=(V,E) be a 2-connected planar graph with at least 3 vertices. Define:
 - *n_i*: number of vertices of degree *i*;
 - *f_i*: number of faces (in some fixed drawing of G) bounded by cycles of length i.

Then we have

$$\sum_{i\geq 1} (6-i)n_i = 12 + 2\sum_{j\geq 3} (j-3)f_j.$$

- Why is this relevant?
- We can rewrite

$$\sum_{i\geq 1} (6-i)n_i = 12 + 2\sum_{j\geq 3} (j-3)f_j.$$

as

$$5n_1 + 4n_2 + 3n_3 + 2n_2 + n_1 + (\dots) = 12 + (\dots)$$

- The first "(...)" contains only negative terms.
- The second "(...)" contains only positive terms.
- So $5n_1 + 4n_2 + 3n_3 + 2n_2 + n_1 \ge 12$.
- Among other things, this means that there are at least 3 vertices of degree at most 5 *in every planar graph*.

- Proof of the theorem:
 - Obvious facts:

 $f = \sum_{j} f_{j}$ and $|V| = \sum_{i} n_{i}$

– From Euler's formula:

$$|V| - |E| + f = 2$$

$$\sum_{i} n_{i} - |E| + \sum_{j} f_{j} = 2$$

$$2|E| = \sum_{i} 2n_{i} + \sum_{j} 2f_{j} - 4$$

• Proof of the theorem:

- From previous slide: $2|E| = \sum_i 2n_i + \sum_j 2f_j - 4$

– Counting edges from the faces:

$$\sum_{j} (j \cdot f_{j}) = 2 |E| = \sum_{i} 2n_{i} + \sum_{j} 2f_{j} - 4$$
$$\sum_{j} (j \cdot f_{j}) - \sum_{j} 2f_{j} + 4 = \sum_{i} 2n_{i}$$
$$\sum_{j} (j - 2)f_{j} + 4 = \sum_{i} 2n_{i}$$

– Counting edges from the vertices:

$$\sum_{i} (i \cdot n_{i}) = 2 |E| = \sum_{i} 2n_{i} + \sum_{j} 2f_{j} - 4$$
$$\sum_{j} 2f_{j} = \sum_{i} (i \cdot n_{i}) - \sum_{i} 2n_{i} + 4$$
$$\sum_{j} 2f_{j} = \sum_{i} n_{i} (i - 2) + 4$$

• Proof of the theorem:

– From the previous slide:

$$\sum_{j} (j-2)f_{j} + 4 = \sum_{i} 2n_{i} \quad (\times 2)$$
$$\sum_{j} (2j \cdot f_{j} - 4f_{j}) + 8 = \sum_{i} 4n_{i} \quad (i)$$

$$\sum_{j} 2f_{j} = \sum_{i} n_{i}(i-2) + 4 \quad (\times (-1))$$
$$\sum_{j} (-2)f_{j} = \sum_{i} (2n_{i} - i \cdot n_{i}) - 4 \quad (ii)$$

- Adding (i) and (ii), we get the final expression: $\sum_{j} (2j \cdot f_j - 4f_j - 2f_j) + 8 = \sum_{i} (4n_i + 2n_i - i \cdot n_i) - 4$ $2\sum_{j} (j-3)f_j + 12 = \sum_{i} (6-i)n_i$