COS 341 Discrete Mathematics

Administrative Information

- http://www.cs.princeton.edu/courses/archive/fall02/cs341/
- Professor: Moses Charikar moses@cs.princeton.edu 305 CS building, 8-7477
- Secretary: Mitra Kelly mkelly@cs.princeton.edu 323 CS Building, 8-4562
- Teaching Assistants: Adriana Karagiozova 414 CS Building, 8-5388

Renato Werneck
karagioz@cs.princeton.edu 314 CS Building, 8-5135

Administrative Information

- Required text: Invitation to Discrete Mathematics Jiri Matousek and Jaroslav Nesetril
- Reference: Discrete Mathematics and its Applications

Kenneth Rosen

- All handouts posted on web page
- Class mailing list
- Homeworks assigned every Wed., due in class next Wed.
- Grading:

9-10 homeworks (80\%), take-home final (20\%)

- Collaboration policy

Discussion Sessions/Office Hours

- Discussion Sessions in addition to office hours (perhaps)
- Times announced next week on basis of student choices
- My office hours for next week: Tue, 2:00-4:00 pm

What is Discrete Mathematics ?

- Mathematics dealing with finite sets
- Topics: counting, combinatorics, graph theory, probability
- Goals:

Develop mathematical maturity
Foundation for advanced courses in Computer Science

- Flavor of questions:
- How many valid passwords on a computer system?
- What is the probability of winning a lottery?
- What is the shortest path between two cities?

Toy problems as illustrations

- Puzzle:

Three houses, three wells:
Can we connect each house to each well by pathways so that no two pathways cross ?

- Real world problem:

VLSI: Given placement of components of circuit on a board, is it possible to connect them along a board so that no two wires cross?

Proof techniques

Evidence vs. Proof

$p(n)=n^{2}+n+41$
Claim: $\forall n \in \mathrm{~N}, p(n)$ is prime

Evidence

$$
\begin{array}{ccl}
p(0)=41 & \text { prime } & \\
p(1)=43 & \text { prime } & \\
p(2)=47 & \text { prime } & \\
p(3)=53 & \text { prime } & \\
\vdots & & \\
p(20)=461 & \text { prime } & \text { looks promising! } \\
\vdots & & \\
p(39)=1601 & \text { prime } & \text { must be true! }
\end{array}
$$

Only prime numbers?

$\forall n \in \mathrm{~N}, p(n)=n^{2}+n+41$ is prime

-Cannot be a coincidence
-Hypothesis must be true !

But it is NOT !
$p(40)=1681$ is NOT PRIME

Evidence vs. Proof

- Euler's conjecture (1769):

$$
a^{4}+b^{4}+c^{4}=d^{4}
$$

has no solution for a, b, c, d positive integers

Counterexample: 218 years later by Noam Elkies:

$$
95800^{4}+217519^{4}+414560^{4}=422481^{4}
$$

Example courtesy: Prof. Albert R. Meyer's lecture slides for MIT course 6.042, Fall 02

Evidence vs. Proof

- Hypothesis:

$$
\begin{gathered}
\quad 313 \cdot\left(x^{3}+y^{3}\right)=z^{3} \\
\text { has no positive integer solution }
\end{gathered}
$$

False !

But smallest counterexample has

more than 1000 digits !

Example courtesy: Prof. Albert R. Meyer's lecture slides for MIT course 6.042, Fall 02

Mathematical Induction

- Find a general formula for $\sum_{i=0}^{n} 2^{i}$

$$
\begin{array}{r}
2^{0}=1 \\
2^{0}+2^{1}=3 \\
2^{0}+2^{1}+2^{2}=7 \\
2^{0}+2^{1}+2^{2}+2^{3}=15 \\
\sum_{i=0}^{n} 2^{i}=2^{n+1}-1 ?
\end{array}
$$

Mathematical Induction

$$
\sum_{i=0}^{n} 2^{i}=2^{n+1}-1
$$

1. (Basis step)
$\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$ holds for $n=0$
2. (Inductive step)

Suppose formula holds for $n=n_{0}$ (inductive hypothesis) We prove that it also holds for $n=n_{0}+1$

$$
\begin{aligned}
\sum_{i=0}^{n_{0}+1} 2^{i} & =\left(\sum_{i=0}^{n_{0}} 2^{i}\right)+2^{n_{0}+1} \\
& =\left(2^{n_{0}+1}-1\right)+2^{n_{0}+1} \\
& =2^{n_{0}+2}-1
\end{aligned}
$$

- Show that any $2^{n} \times 2^{n}$ chessboard with one square removed can be tiled using L-shaped pieces, each covering three squares.

inductive step

Template for proof by Induction

- Prove that $\mathrm{P}(\mathrm{n})$ is true for all positive integers n
- BASIS STEP: Show that $P(1)$ is true
- INDUCTIVE STEP: Show that $\mathrm{P}(\mathrm{k}) \quad \mathrm{P}(\mathrm{k}+1)$

Strong Induction

- Prove that $P(n)$ is true for all positive integers n
- BASIS STEP: Show that $\mathrm{P}(1)$ is true
- INDUCTIVE STEP: Show that

$$
[P(1) \wedge P(2) \wedge \ldots \wedge P(k)] \rightarrow P(k+1)
$$

Strong Induction example

- Show that if n is an integer greater than $1, \mathrm{n}$ can be written down as a product of primes
- $\mathrm{P}(\mathrm{n})$: n can be written down as a product of primes
- Basis Step: $\mathrm{P}(2)$ is true, $2=2$
- Inductive Step: Assume $P(\mathrm{j})$ is true for all $\mathrm{j} \leq \mathrm{k}$ Need to show that $\mathrm{P}(\mathrm{k}+1)$ is true
- Case $1: \mathrm{k}+1$ is prime, $\mathrm{P}(\mathrm{k}+1)$ is true
- Case 2: $\mathrm{k}+1=\mathrm{a} \cdot \mathrm{b}$

By induction hypothesis, both a and b can be written as a product of primes.

Proof by contradiction

Prove that $\sqrt{2}$ is irrational
Suppose $\sqrt{2}=\frac{m}{n} \quad \operatorname{gcd}(m, n)=1$
$2=\frac{m^{2}}{n^{2}}$
m is even
$m=2 k$
$2=\frac{4 \mathrm{k}^{2}}{n^{2}}$
$n^{2}=2 k^{2}$
n is even
Contradiction!

