
Princeton University
COS 217: Introduction to Programming Systems

Program Understandability

An understandable program:

(1) Uses a consistent and appropriate indentation scheme. All statements that are nested
within a compound, if, switch, while, for, or do...while statement should be indented. We
recommend either a 3- or 4-space indentation scheme. Note that the Emacs editor can
automatically apply a consistent indentation scheme to your program.

(2) Uses descriptive identifiers. The names of variables, constants, structures, types,
functions, etc. should indicate their purpose. Remember: C can handle identifiers of any
length, and the first 31 characters are significant. We encourage you to prefix each
variable name with characters that indicate its type. For example, the prefix "c" might
indicate that the variable is of type "char," "i" might indicate "int," "pc" might mean
"pointer to char," "ui" might mean "unsigned int," etc.

(3) Contains carefully worded comments. You should begin each program file with a
comment that includes your name, the number of the assignment, and the name of the
file. Each function should begin with a comment that describes what the computer does
when it executes that function. That comment should explicitly state what (if anything)
the computer reads from stdin (or any other file), and what (if anything) the computer
writes to stdout (or any other file). The function's comment should also describe what the
computer does when it executes that function by explicitly referring to the function's
parameters and return value. Finally, the comment should describe the function's checked
and unchecked runtime errors. The comment should appear in both the .h file (for the
sake of the clients of the function) and the .c file (for the sake of the maintainers of the
function).

For example, here is an appropriate way to comment Assignment 1’s SymTable_put
function:

In file symtable.h:

...

int SymTable_put(SymTable_T oSymTable, const char *pcKey, void *pvValue);
/* Add a new binding to oSymTable consisting of key pcKey and value
 *pvValue. Return 1 (TRUE) if successful, and 0 (FALSE) otherwise.
 It is a checked runtime error for oSymTable or pcKey to be NULL. */

...

Page 1 of 2

In file symtable.c:

...

int SymTable_put(SymTable_T oSymTable, const char *pcKey, void *pvValue);
/* Add a new binding to oSymTable consisting of key pcKey and value
 *pvValue. Return 1 (TRUE) if successful, and 0 (FALSE) otherwise.
 It is a checked runtime error for oSymTable or pcKey to be NULL. */
{
 Body of function definition here
}

...

Note that the comment explicitly states what the function returns, refers to the function's
parameters (oSymTable, pcKey, and pvValue), and describes the function's checked
runtime errors.

Copyright © 2002 by Robert M. Dondero, Jr.

Page 2 of 2

	COS 217: Introduction to Programming Systems

