To appear: Proceedings of the SIGPLAN ‘99 Conference on Programming Languages Design and Implementation (PLDI 99), May
1999, Atlanta Georgia.

Whole Program Paths

James R. Larus

Microsoft Research
One Microsoft Way
Redmond, WA 98052

larus@microsoft.com

www.research.microsoft.com/~larus

Abstract executed path segments and quantify their cost [2, 6, 7]. Previous
path profiling algorithms, however, captured acyclic paths, which
Whole program paths (WPP) are a new approach to capturing and are short, disjoint snippets of execution that unfortunately end at

representing a program’s dynamic—actually executed—control loop and procedure boundaries—two of the most interesting
flow. Unlike other path profiling techniques, which record points in a program’s execution [6] (this technique has been
intraprocedural or acyclic paths, WPPs produce a single, compacextended to handle paths that cross procedure boundaries [19]).

ggrs;trilc?r?(;r; d()i;taergrrggg?rzl SQFVE control flow, including loop This paper describes a new approach to measuring a program’s

' control flow that captures a complete picture of the program’s
This paper explains how to collect and represent WPPs. It alsodynamic behavior. The technique introduceisole program
shows how to use WPPs to firwt subpaths, which are the paths (WPP), which are a complete, compact record of a
heavily executed sequences of code that should be the focus gbrogram’s entire control flow. A whole program path crosses
performance tuning and compiler optimization. both loop and procedure boundaries, and so provides a practical
Keywords basis for interprocedural path profiling. This paper explains how

to record a WPP, describes its representation, shows that this

dynamic program measurement, program tracing, path profiling, representation can be used to analyze program behavior, and
program control flow, data compression demonstrates the technique’s practicality on SPEC benchmarks
1. Introduction and commercial application programs.

A central challenge facing computer architects, compiler writers, 1.1 Overview

and mere mortal programmers is to understand a program'swhole program paths are collected in two phases. The first
dynamic behavior. Events that occur while a program runs areproduces a trace of the acyclic paths executed by a program. The
often elusive, but they provide a basis for understanding thesecond phase transforms thect into a more compact and usable
program’s behavior and improving its performance. Program form by finding its inherent regularity (i.e., repeated code). In
paths or traces—sequences of consecutively executed basigractice, compression can run concurrently with the instrumented
blocks—offer one of the few clear windows into a program’s program, so only the compressed form need be stored. The
dynamic behavior. Paths, unlike other techniques, such as blockyroduct of compression is a directed acyclic graph (DAG), which
or edge profiles, capture aspects of a program’s dynamic controlis not only a compact and lossless representation of the program’s
flow, not just its aggregate behavior. dynamic control flow, but is also a convenient representation for

Paths have long provided a unifying context for performance analysis. This paper describes one such analysis, which identifies
tuning. Programmers have improved the performance of large,heavily executed (hot) subpaths. Figure 1 illustrates the process
complex systems, such as operating systems and databases, 18§ recording a whole program path.

identifying heavily executed paths and streamlining them into Section 2 briefly describes the trace instrumentation and resulting
“fast paths” [20, 24]. In compilers as well, trace scheduling and, sequence of acyclic paths. One novel contribution of this work is
more recently, path-based compilation demonstrate that programhe next phase (compression), which turns a stream of acyclic
optimization can benefit from a focus on a program’s dynamic paths into a context-free grammar. The compression technique is
control flow [2, 8, 11, 12, 14]. Recently designed computer based on Nevill-Manning and Witten's SEQUITUR hierarchical
architectures have also directly exploited traces to enhancecompression algorithm [21, 22]. This linear, on-line algorithm
instruction caching and execution [15, 25, 26]. builds a context-free grammar for a string. The resulting grammar

Paths are often identified by ad-hoc approaches; alth@ogmtty reflects its input’s hierarchical structure and is typically far more

developed path profiling techniques can inexpensively identify compact than the original sequence. Section 3 describes Nevill-
Manning and Witten's algorithm and a modification that enhances

its performance. The product of this algorithm is a grammar. The
Copyright © 1999 by the Association for Computing Machinery, Inc. Per- DAG representation of this grammar, called a Whole-Program
mission to make digital or hard copies of part or all of this work for per- Path (WPP), compactly and effectively records a program’s entire
sonal or classroom use is granted without fee provided that copies are noggntrol flow. Section 4 presents another contribution of this work,
made or distributed for profit or cpmmercial agvantage and th_at Ccopies \which is an analysis technique for WPPs. Section 5 contains
bear this notice and the full citation on the first page. Copyrights for measurements of the technique on SPEC benchmarks and

components of this work owned by others than ACM must be honored. | ,. , -
Abstracting with credit is permitted. To copy otherwise, to republish, to Microsoft's SQL database and WinWord document processor.

post on servers, or to redistribute to lists, requires prior specific permissionAs an example, consider the code in Figure 2. The loop executes

and/or a fee. Request permissions from Publications Dept, ACM Inc., fax nineteen acyclic paths (labeled 1-5). The SEQUITUR algorithm
+1 (212) 869-0481, or permissions@acm.org.

Program

Instrumented Program

PP (Path Profiling Tool)

Whole
Program Acyclic
Path (WPP) Paths

o,

Figure 1. Collecting a Whole Program Path. A path-profiling tool (PP) instruments a program to produce a trace of executed
acyclic paths. These paths are processed by another tool (PPCompress) into a Whole Program Path (WPP). Further tools analyze
WPPsto find performance bottlenecks or program errors.

processes the path trace and produces the grammar in the figure. mechanism originally used to terminate paths at loop backedges
The grammar’s DAG representation is the WPP data structure. and to cut paths to limit the size of path identifiers [6].

2. Produci ng an Acyclic Path Trace The path trace consists a sequence of byte code-operand pairs:

The first step in this process is to instrument a program to recorq ~OPCode(Operand) Meaning
the acyclic paths executed by the program. The instrumentation i$ Ent er Rout i ne(1 D) | Subsequent paths execute in routjne
a slight variation of a previously published path-profiling ID
algorithm [6]. This algorithm adds code to increment an
accumulator by predetermined anmts along a select set of edges
in a routine’s control-flow graph. At the end of an acyclic path
(i.e., at a routine’s exit or a loop backedge), the value in this| NewPat h(| D) Path ID executed
accumulator uniquely identifies the executed path. The original : L
profiling algorithm used this path identifier to index a table of Enter Thread(! D) lSE;Jbsequent paths execute in thread
metrics associated with the path. Whole program profiling instead

appends the identifier to a trace of executed paths. The run-time instrumentation tracks non-local returns

- . . - (setjmp/longjmp and exceptions), to produce the correct number
Whole program profiling requires a slight redefinition of a path, |°f LeaveRouti ne operations. Several variants of each

so edges leading into a basic block containing a procedure cal d b hort. and d 4 the si fat
terminate acyclic paths. This change unfortunately reduces theoPcode—e.g., byte, short, and word—reduce the size of a trace.

average path length, and so increases the size of a path tracé\{lore aggressive optimization, such as encoding the ID in an
However, it is necessary to ensure that the path leading to a Cag)pcode did little to reduce the trace, as the range of ID values is

LeaveRout i ne() Leave current routine and return to
previous one

site is recorded in the trace before any paths executed by th arger than that found in instruction bytecodes. Nevertheless, the

callee. The path-profiling algorithm truncates paths with the race is reasonably compact, as most paths require qnly three
path-profiling aigor u P w bytes (an opcode and a short path ID). For example, Microsoft's

Acyclic SEQUI TUR
Code Paths Path Trace G amar
1
for (i=0; i<9; i++) > y,
bar (i); z .
bay (1) S - 14AAACC3
b 0 A 24
. . . ar (| 14242424
'”}fb?j“;”;)” { 25252525253 B — 25
return j; 4 £ C- BB
el se
return O;
}
Figure2. Sample code, the pathsthrough it, and the grammar and WPP produced by PPCompress.

whi | e i nput
C < next
append ¢ to start

is not enpty do
i nput character;
rule S

while digramor utility property is violated do
// Restore di gram uni queness property:
if digram D occurs twice (no overlap)

if one occurance of Dis RHS of

repl ace the other occurance of Dwth LHS of R

el se
create new rule R’ with RHS D;
replace both occurences of D by LHS of R’
endi f

i f rule R is only referenced once
replace single use of R by RHS of R;
delete R;
endi f
od
od

Figure 3. The SEQUITUR algorithm. LHS isthe left side (non-terminal) of a grammar production. RHS isthe right side of the

production.

// Restore rule utility property:

in any rules then
rule R then

t hen

SQL database system running the TPC-C benchmark for 120
seconds produces 629 MB of trace (and the WPP for this run is
only 21 MB).

3. Producing a Whole Program Path

The next stage of whole program profiling employs a modified
version of the SEQUITUR agorithm to both compress the path
trace and uncover its regular structure. SEQUITUR is a string
compression algorithm that constructs a context-free grammar for
its input [21, 22]. This agorithm has been used to find
hierarchical structures in a variety of seguences, ranging from
DNA sequences to genealogical databases. The insight
underlying the algorithm is that log N rules can generate N
occurrences of a subsequence. For example, the string:

abcabcabcabcabc
is produced by the grammar:

S - AAB

A - BB

B - abc
This grammar requires fewer symbols (11 versus 15), and, equally
important for our application, explicitly captures repetitions of the
pattern abc. This aspect becomes more apparent when the
grammars are represented as DAGs (Section 3.3).

Section 3.1 explains the original SEQUITUR agorithm. Section
3.2 describes a modification to the algorithm to improve its
performance. Section 3.3 explains how PPCompress uses the
SEQUITUR agorithm to compress an acyclic path trace.

3.1 SEQUITUR Algorithm

The SEQUITUR agorithm (Figure 3) is a linear-time, on-line
algorithm for producing a context-free grammar from an input
string [22]. The algorithm operates by appending symbols from

Digram uniqueness property. A digram is a pair of
consecutive symbols on the right side of a grammar
production. This property states that a digram occurs at most
once in the rules of the grammar. If adding a symbol
introduces a duplicate digram, SEQUITUR replaces both
(non-overlapping) occurrences of the digram with the non-
terminal symbol for a rule (possibly already in existence) that
has the digram as its right side. For example, after adding
symbolb to a grammar:

S - abca
the digramab now occurs twice. SEQUITUR replaces both
occurrences with a new non-terminal symapl

S - AcA

A - ab
Rule utility property. The second property is that all non-
terminal symbols in a grammar (except the start symbol)
must be referenced more than once by (other) rules.
SEQUITUR eliminates a rule referenced only once by
replacing the reference with the rule’s right side. Continuing
the example above by adding further symbols leads to:

S BCBA
ab
Ac

Ad
EQUITUR introduces a new rule:

DD
ab
Ac
Ad
BC

If the next symbol S

A
B
C
isl,
S
A
B
C

—

D

—

the input string, in order, to the end of the grammar's start At this point, non-terminal8 and C are only used once and

production. After addingach symbol, SEQUITUR manipulates
the grammar productions to preserve two invariants:

SEQUITUR eliminates them.
Note that applying either rule may introduce new diagrams, which

S - B3B4
A - 12
B - AAl

{\
G

A

2

Figure4. Grammar and WPP for the string 121213121214.

in turn require further transformation before the process
converges. Nevill-Manning and Witten proved that SEQUITUR
runs in time linear in the length of the input string [22].1 Note
that this time bound is independent of the size of the input
alphabet.

. . . S
The agorithm’s space requirement, for a grammar and auxiliary

data structures, is linear in the size of the grammar, whioklég
N) in the best case, whekkis the input length. The worst case, in
a sequence without repetition,Q¢N).

In practice, time and space are reasonable.
SPECINT95 benchmark i999. go, whose 2GB trace was
processed in less than an hour in 300 MB of memory. The
grammars themselves are smaller; approximately 100 MB for this
benchmark, therefore analysis of a WPP requires less memory.

3.2 SEQUITUR Enhancement

Given that SEQUITUR is an on-line algorithm with tight time and
spacebounds, it is not surprising that the resulting grammars are
not minimal. Although they are quite compact, a small change to
the SEQUITUR algorithm improves some grammars by
identifying more repetition of a substring. To see the need for
these changes, consider the stribgy111211111. SEQUITUR
follows the following steps:

Start Rule Action
S - 1111 createA - 11
S - AA1211 apply A - 11

! The linearity proof assumes that a digram can be found from a

pair of input symbols in constant time by using a hash table. To
save space, PPCompress does not use a hash table, which m
be sparsely filled to achieve this behavior. Instead, PPCompres
associates, with every symbol, a map of the symbols that

The largest

&

S.

S - AA12A1

S - AB2BA
Although the input contains two occurrenceslafill, they are
represented differently in the grammar, because rulesdinted
while processing the first occurrence change the sequence of
reductions applied to the second occurrence. Fortunately,
subsequent occurrences are reduced the second way.

A minor change fixes this problem by looking ahead a single
symbol before introducing a new rule to eliminate a duplicate
digram. Assume the rightmost symbols of the start rule, which
form a duplicate digram, aseandy and the look-ahead symbol is

I. If the look-ahead symbol forms a digram with the second
symbol of the duplicate digram and this digram,is the right

side of an existing rule, then do not introduce a new rule to
eliminate the duplicate digram. Instead, read the next symbol and
apply the existing rule. This algorithm is called SEQUITUR(1).
This change does not affect the time bound on the algorithm, and
in practice, seems to produce slightly smaller grammars.

Consider the example above. At the step that introduces the rule
B - ..., the look-ahead character is 1. Since 11 (the second
character of the duplicate digram and the next character) is the

right side of A - 11, a new rule is not introduced. Instead,
SEQUITUR(1) appliestherule A - 11 , resulting in the string:

- AA12AA. The look-ahead character is again 1, but no
digram Al is known, so the algorithm introduces a new rule B

- AA which leads to the grammar:

S - C2C

A -1
C - AAl

createB - Al

3.3 PPCompress

PPCompress uses the SEQUITUR algorithm to compress an
acyclic path trace. SEQUITUR operates on a string of symbols.
In PPCompress, a symbol is a unique identifier for an executed
acyclic path. As a previously unknown (routine id, path id) pair
appears in the input stream, it is assigned a unique identifier.
PPCompress imposes no limits on these symbols, beyond the
space needed to maintain a hash table that records this mapping.
In practice, programs execute relatively few paths (tens of
thousands at most), so the number of symbols and the size of their
identifiers remain managesble.

Grammars are typically represented as trees. However, WPPs are
directed acyclic graphs (DAGs) since forming a tree would
decompress a grammar into a string comparable in size to the path

trace. Interior nodes in the DAG represent grammar productions.

They are labeled with the non-terminal symbol from the left side

of the production. Exterior nodes are terminal symbols (acyclic
paths). An edge from node A to node B represents an occurrence

rule B in theright hand side of rule A. A node’s sucessors are
ordered in the same manner as symbols in corresponding rule’s
right hand side.

immediately follow. This map, which is keyed on the second The DAG representation is convenient to analyze. A sequence of
symbol, returns the digram. These maps are implemented agxecuted paths can be recovered by traversing the DAG.
unbalanced binary trees, which typically run in time logarithmic Consider for example the stridg12131214 (pathl might be a

in the number of digrams in which a symbol occurs first. The loop backedge, and other paths differeatés through theobp
worst case behavior of this code@$N?), which is unlikely to body). Figure 4 contains its grammar and WPP. Repetitions of an
occur in this application, as any path is followed by at most a acyclic path or sequence of acyclic paths appear in a WPP as
small number of other paths. multiple DAG paths from a node containing a non-terminal to

1

S - AAA @

A - BC

B - ab

C - bc 3

3_4& A
3 o 6 3
a b c i —
Pl Sl P21 SZ P3 S"'

Figure 5. The WPP and grammar for the string Figure6. A nodein a WPP and its descendents.
abbcabbcabbc. The numbers are execution frequencies.

another DAG node. For example, node B corresponds to two 4. Analyzing Whole Pr ogram Paths

executions of the path 1.2 followed by path 1. A WPP captures a program’s entire dynamic control in its DAG.
Many interesting questions about a program’s behavior can beThis structure can be analyzed in many ways. This paper focuses
answered directly from a WPP. For example, acyclic path on the important problem of finding hot paths. Previous path
executes before pathif there exists a common ancestor of both profiling work found that a small collection of hot paths typically
nodes in which an inorder traversabcheg beforeq. Another dominate a program’s execution [6]. WPPs provide the
useful analysis is the dynamic execution context of code, such aspportunity to find longer and more complete paths that cross

its routine or loop iteration. This context is the paths that executeprocedure and loop boundaries. WPPs can also be analyzed find
before and after the code. These paths are neighbors along thgther dynamic program properties.

fringe of the DAG and are easily found by traversal.

The execution frequency of a sequence of acyclic paths is the4'1 SprathS

number of times that prefix of this sequence is executed A whole program path encompasses a program’s entire execution.
immediately before the suffix of the sequence. Sequences, suctPerformance tuning and compiler optimizations generally focus
asab or abc in Figure 5, that have a least common ancestor On heavily executed code, in which small improvements yield
(LCA) in the WPP have the same execution frequency as thislarge performance gains. Finding this code in a WPP requires the
node. The execution frequency of a node is the number of pathdiotion of a subpath—a consecutively executed sequence of
in the DAG from the start symbol to the node (the numbers in theacyclic paths. A strinX is a subpath of a WPP gramn@if X is
figure). Other sequences, suchcas do not have a LCA as they @ substring of the string produced ®yaXp = L(G) wherea,3 [

arise from the repetition of a subsequence, in this Aggehich T*, L(G) is the string produced b, andT is the set of terminals
starts witha and ends witlt). Their frequency can be computed (acyclic paths).

from the frequency of consecutive edges leading into the LCA of 4.2 Hot Subpaths

the subsequence (no4
a (nosg A hot path is a path that incurs a substantial fraction of a

Since WPPs represent all executions of an acyclic path as a singlgrogram’s execution cost. Ammons, Ball, and Larus defined hot
termlngl node, it is not possible to record distinct metriceémh . paths as acyclic paths that contribute more than 0.1-1.0% of some
execution of a path. For example, a path trace could associat@yecution metric [1]. They showed that in the SPEC benchmarks,
metrics frpm hardware perfprmance counters (e.g., cycles, Stausfelatively few hot paths (10-208kcount for most of a program’s
cache misses, etc. [1]) with each path. PPCompressota eyxecution cost (40-99%). Hot subpaths must be defined
directly maintain these metrics from different path executions, but differently. Since subpaths lack boundaries, they can grow to

instead must summarize them by aggregating values into a path’gncompass an arbitrary fraction of a program’s execution.
terminal symbol. This aggregation is not always disadvantageous, = .)
as it helps eliminate “noise” in performance data. Intuitively, a hot subpath is a short sequence of acyclic paths that

) . . . is costly, either because thebpath is frequently executed or
Collective metrics—such as the number of instructions along apgcause operations along it are digartionately expensive.
path, the average number of cycles executed along the path, or theqrmally, a hot subpath is a sequence of L or fewer consecutively
average number of cache misses along the path—are suitable fogyecuted acyclic paths that incur a cost of C or more. A subpath’s
aggregation. Individual metrics, such as the number of cachecost s its execution frequency multiplied times the sum of its
misses in a particular execution, cannot be captured in a WPP¢onsityent acyclic paths’ costs. A minimal hot subpath is the
However, context-sensitive metrics similar to those collected by ghortest prefix of a subpath with cost of C or more. Minimal hot

Ammons, Ball, and Larus [1]—for example, the number of caches g,haths are of interest, since longer hot subpaths are easily found
misses in b after it executes path a—could be handled byby adding acyclic paths to a minimal subpath.

associating costs with interior nodes.

voi d Report Hot SubPat hs(Rul e* rule, int mark) {

if (rule->Mark() '= nmark) {
rul e- >Set Mar k(mar k) ;

// First time visiting rule

rul e->Set Prefix(new LLi mitedString(MaxStringlLength)); // Prefix of this rule
LLi mi tedString* subPath = new LLimtedString(MuxStringLength); // Subpath thru rule

// Iterate over successors in DAG (non-terminals on RHS of rule)
for (Synbol* sym = rul e->RHS()->FirstSyn(); !rule->RHS()->Done(sym; sym= sym >Next())

if (sym>lsTermnal ())

appendTermi nal (rul e, subPath, sym; // Synbols are just appended to subpath

el se {
Rul e* symRule = sym >l nRul e();
Repor t Hot SubPat hs(synRul e, nark);

appendTerm nal String(rul e, subPath,

if (!synRul e->Prefix()->CoversNode())
// Node is wider than prefix, so change suffix

== 0) {

// Free strings after |ast use

*subPath = *synRul e->Suf fix();

i f (synmRul e->l ncr NunPredecessors(-1)

del ete synRul e->Prefix();
del ete synRul e->Suffix();
}
}

}
rul e- >Set Suf fi x(subPat h);
}
}

// Postorder: find subpaths in successor

synRul e->Prefix());

voi d appendTerm nal String(Rule* rule, LLimtedString* subPath, LLimtedString* string) {

for (int i =0; i < string->Length(); i

+=]_)

appendTer m nal (pps, rule, subPath, (*string)[i]);

voi d appendTerm nal (Rul e* rule, LLimtedString* subPath, Synbol* sym {

appendTer m nal ToRul ePrefix(rule, sym;
appendTer m nal ToSubPat h(rul e, subPat h,

voi d appendTer ni nal ToRul ePrefi x(Rul e* rule,

Symbol * sym) {

if (rule->Prefix()->Length() < MaxStringLength)

rul e->Prefix()->Append(sym this);
el se
rul e->Prefix()->Set Cover sNode(fal se);
}

voi d appendTer mi nal ToSubPat h(Rul e* rul e,
subPat h- >Append(sym this);

LLi mi tedString* subPath, Synbol* sym ({

int expense = subPat h->Cost () *Frequency(rul e);
if (MnCost <= expense &% M nStringLength <= subPat h->Length()) {

print subPat h;
subPat h->C ear () ;

}
}

rul e->Prefix()->Freeze(subPat h->Length());

// Stop before hot subpath

Figure 7. Algorithm for finding minimal hot subpaths whose length is between MinStringL ength and M axStringL ength and cost

greater than MinCost.

Consider the example in Figure 5 (it might be part of a larger
WPP, as the rule utility property would otherwise eliminate
symbols B and C). Suppose that each acyclic path a, b, and ¢ has
a cost of 1 and that we are looking for hot subpaths of length
greater than 1 and less than 4 whose cost is 6 or more. The WPP
contains four overlapping hot subpaths: ab, bc, bb, and ca. The
algorithm in this paper identifies two hot subpaths (ab and bc).

The other two can be found by extending these two.

Figure 7 presents an algorithm for finding hot subpaths in a WPP.
The algorithm performs a postorder traversal of the DAG, visiting
each node once. At each interior node, it examines each subpath
formed by concatenating the subpaths produced by two or more of
the node's descendents. The algorithm examines only
concatenated strings, as the hot subpaths produced solely by a

Table 1. Characteristics of benchmark programs. Thefirst column lists their (uninstrumented) running time. The second column
lists the size of the acyclic trace file. Thethird column istherate at which thisfileis produced. Thefourth column isthe size of a
textual representation of the WPP. The fifth column is the rate at which the WPP is produced. The sixth column is the
compression ratio. The seventh column lists the number of threads run by each program. The next column is the number of
acyclic paths executed by all thread. The following column is the number of rules needed to describe the control flow. The final
column isthe number of rules per executed acyclic path.

Benchmark Time | Trace Size Trace/ WPP Size | WPP/ | Trace/ Num Num Num Rules/

(sec) (MB) Sec (MB) Sec WPP | Threads | Acyclic Paths Rules Path

099.g0 90.1 2176.6 24.15 1411 157 154 1 17,321| 2,760,820 159.4
124.mB8ksim 30 115.0 38.33 0.3 010 3928 1 1,169 7,927 6.8
126.gcc 9.0 2543 28.25 237 2.64 10.7 1 20,739 489,287 236
129.compress (train) 0.0 83| 22230.90 02| 63259 35.1 1 364 5,857 16.1
130.i 4.0 300.4 75.08 2.6 064 1169 1 966 62,076 64.3
132.ijpeg 30 478 15.94 6.6 2.19 73 1 1,637 136,816 836
134.perl (jumble) 17.0 605.0 35.59 150 0.88 403 1 2,115 238,893 1130
147 vortex 48.0 1598.8 3331 6.6 014 2419 1 5,310 136,269 25.7
SQL 120.0 628.7 5.24 211 0.18 299 2 193845 404110 26
WinWord 8.0 733 9.20 6.8 0.85 10.8 4 54254 139073 2.7
descendent node are found by arecursive call. there is no need to retain prefix and suffix strings for nodes whose

Consider anode N (Figure 6). Viewed as a grammar, each of its prgdecessors ha\(e all been visited, and Fhe codg fre_es and reuses
successors (i.e. rules) produces a string (consisting of acyclic this space. In th|s_case,.t.he space rgquwemenbmprc_)nal to

paths). Let P, be the L-limited prefix of the string derived by the number of partially visited nodes in the DAG, which can be
successor i and let § be the L-limited suffix of the string. An L- far lower tharO(N).

limited string is a string containing L or fewer symbols. A node’s 5. Performance

prefix is the firstL symbols that it produces, and its suffix is the) ; -))
lastL symbols. This section describes an implementation of whole program

, . ' , . profiling that demonstrates that the technique is practical, even for
Note th_at a node’s prefl.x and suffix are independent of its parents.,arge commercial applications. The application programs were
In particular, the algorithm computes only once the prefix and jgrumented with a version of the PP path profiler [6] running on
suffix of a node with multiple pretessors—including multiple jicrosoft's Vulcan tool. Vulcan is an executable instrumentation
edges_ from the same node—w_hlch preserves theesand time system similar to ATOM and EEL [17, 27]. Traces were
benefits of the DAG representation. processed by PPCompress, which uses the techniques described in
In the example, the-limited subpaths for nodd are found in the this paper to produce and analyze a WPP.

strings: S|Pz, Sl|Ps, and possiblyS|[Po||Ps (if the string the gverhead of path profiling instrumentation and WPP
produced by the secondcssor is shorter thansymbols). The ,rocessing overhead are moderate (small integer slowdown and
operator. || is string concatenqtlon. Similarly, thiémited preﬁx tens of minutes of processing time). To facilitate
and suffix of nodeN are the first and ladt symbols examined gyperimentation, path traces were written to a file, rather than
when looking for substrings at notle processed on line. Measurements were performed on a dual
This approach finds non-minimal subpaths. For example, if the processor, 200 MHz Pentium-Pro PC with 256 MB of memory
suffix of a node ends with a hot subpath, it will be extended with running Windows NT 4.0 Server (SP4).

symbols.from the prefjx of the next node. Changing the defiqition This paper contains measurements of the SPECINT95
of a suffix corrects this problem. A node’s suffix is the maximal penchmarks and two Microsoft application programs. The first is
suffix of the finalL symbols that is not part of a hot subpath. The 5 (gjational database (Microsoft SQL 7.0) running the TPC-C
algorithm clears the subpath string when a hot subpath is foundyenchmark. TPC-C is an on-ine transaction processing
so that this string (which becomes the node’s suffix) only contains penchmark that involves a mix of five concurrent transactions of
symbols encountered after the last hot subpath. Similarly, agiterent types and complexity executed either on-line or queued
node’s prefix subpath is maximal prefix of the first L symbols that o geferred execution [13]. The database is comprised of nine
is not part of a hot subpath. The algoritheefres mode’s prefix — yheg of records with a wide range of record and population sizes.
string at the first subpath. The benchmark runs for a fixed length of time, in this case a short
Since subpaths are limited to lengttor less, the amount of work (non-standard) run of 120 seconds. Note that the instrumented
performed at a node is proportional to the number of its database accomplished far less in this interval than the original
successors. The algorithm in Figure 7 traverses each edge in theode (136 and 2133 transactions, respectively). The second
WPP once and performs at mdstoperations per edge, so its example is a word processing program (Microsoft WinWord 9)
running time isO(EL), whereE is the number of edges in the running a standard breadth test scenario, which exercises
WPP. In the worst case, the space used by this algorithm could b@pproximately 20% of its code. On the system above, WinWord
O(NL), whereN is the number of nodes in the WPP. However, runs the uninstrumented scenario in approximately 8 seconds.

10000

1000 1— —e&— Compress Time
—l— Instrumented Time
—aA— Trace Size ¢
100 +—

WPP Size
—X¥— PPCompress Time
—@— Num Non-Terminals

Relative Performance

10

1 10 100 1000 10000
Relative Input Size

Figure 8. Whole Program Path performance running compress benchmark with various sizeinput files.

5.1 Profile Size plausible measure of a program’s control-flow regularity, which

) o could possibly help isolate and study areas of regular and irregular
Table 1 reports some overall characteristics of program traces and control flow.
WPPs. The column labeled Trace Sze contains the size of the . .) . .
binary file trace of acydlic paths (Section 2). WPP Size contains Elgure. 8 examines the relgtlonghlp betyveen program running
the size of the ASCII grammar produced by PPCompress (the time, file size, and processing time. This experlmgnt used the
binary representation of a WPP can be two times smaller). The compress program from the SPEC95 benchmark suite. The size
ratio of these two files' size is a rough measure of the of the file to be compressed ranged between 100-1,000,000 bytes.
compression achieved by WPPs. The figure plots the relative performance of the instrumented and

. . . uninstrumented program, the size of the trace and WPP file, and
The SPEC benchmarks were run with their smallest input datasethe cost of running PPCompress. Note that the uninstrumented

(test), except for 129.compress, which used the more reasonablérogram’s execution time does not increase linearly with the input

train dataset. 134.perl reports the larger of its two data setsgjze. Although the compression algorithm is linear, the cost of

(jumble). In all cases, traces include the standard libraries. compressing small files is dominated by writing the program’s

The two commercial applications differ slightly. In both, only the output, which is independent of the input data. The instrumented

application code—not library code—was measured. WinWord program does not share this behavior, since its execution is

spends a substantial fraction of its time in library (DLL) and dominated by writing the trace. Most important, the WPP’s size

kernel code, neither of which was captured in this experiment. grew at a slightly slower rate than uninstrumented execution time

SQL, unlike the SPEC benchmarks, performs a substantial amounor the trace file size. Unfortunately, the time tocarce the WPP

of 10, which runs in the kernel. Another major difference is that grew significantly faster than the size of its input. This may

SQL executes many threads, while the SPEC benchmarks argeflect the non-linear components of the algorithm cache

single threaded and WinWord executes almost entirely in oneeffects.

thread. The current system distinguishes control flow in each

thread and constructs a separate WPP for each one. 5.2 Hot SprathS

The highestFigure 9 !reports some hot subpaths fognd in the SPECINT95 and
130.1i, commerqlal benchmarks. In this expe.rlment,.the cost function for

147.vortex) whose control flow is not particularly simple. 2N acyclic path was the number of instructions along the path.

However, all three programs are highly repetitive, and perform theThe _flgure graphs_ the maximum Iengt_h_of a hot subpath (_|n
same task (instruction simulation, chess board search, object2CYclic paths) against the number of minimal hot subpaths with
oriented database queries) many times. The programs with th&@St '/ 10,000 and 100,000, respectively. Because the
lowest compression (099.go, 126.gcc, 132.ijpeg, and WinWord) commercial benchmarks do not |nplude paths through library
have complex, non-iterative control flow. 132.ijpeg differs from code, the absolute number of paths is not comparable between the
the other two SPEC benchmarks, as it executes few (1,637)“"’o sets of programs.

distinct paths, but requires a relatively large number of rules to Comparing the two graphs show that the number of hot paths
capture its control flow. discovered decreases sharply as the threshold increases. The
decrease ranges from 1.8 times (129.compress) to 13.9 (126.gcc).
s usual, 126.gcc differs from the other SPEC benchmarks,

The compression ratio ranged from 7.3-392.8.
compression occurred in programs (124.m88ksim,

The application programs (WinWord and SQL) have far fewer
rules per acyclic path than the benchmarks. This difference ma 1320 s d h | h
arise from the structure and behavior of commercial applications, SXCEP lpeg. gcc’s decrease, however, was close to the

or it may be a measurement artifact due to the absence of “bran;:omme_rcielll applications (9.5 and 12.8 for WinWord and SQL,
code. Nevertheless, he various compression ratios appear to be &SPectively).

1000000

——124.m88ksim
—=—126.gcc
129.compress
130.1i
—%—132.ijpeg
—o—134.perl
=+=—147.vortex
—6—SQL
1000 WinWord

100000 ./.’.’.’./.,-'

10000

Number of Hot Subpaths

100 T T T |
0 500 1000 1500 2000

Maximum Path Length

Figure 9. Number of minimal hot subpaths (with cost = 10,000 and 100,000 instructions, respectively) found with different limits
on the maximum length of a hot subpath (measured in acyclic paths). Subpathsareat least 10 acyclic pathslong.

10000

1000 =€

Number Hot Subpaths

1001tk

10 T T T |
0 500 1000 1500 2000

Maximum Path Length

The shape of the curves is interesting as well. With a few
exceptions, most curves are very flat. This means that few new
hot subpaths were found by increasing the maximum path length
beyond itsinitial value of 100 acyclic paths. The hot subpaths, in
these benchmarks at least, are relatively short ([1 100 acyclic
paths), heavily executed segments of code. This, of course, is the
best situation for compiler optimization, since compilers excel at
small improvements, which can produce large benefits in heavily
executed code. On the other hand, 126.gcc, 129.compress, and

to capture the calling context of a procedure. Their approach
shares some of the limitations of the original Ball-Larus

technique. First, the paths in this technique do not cross loop (or
recursive call) boundaries. Second, interprocedural paths are
assigned a unique name statically. Since the number of potential
paths through a program is huge, a path’s run-time representation
must be an unbounded integer, or potential paths will need to be
truncated to limit the size of path identifiers. In some sense, a
WPP is an identifier—though not a minimal one—that uniquely

the commercial applications find 2.5-3.0 times as many paths as identifies the path that a program took. Finally, their analysis
the length limit increases. This means that a substantial fraction ofpresumes a complete call graph, and introduces ad-hoc techniques
the hot subpaths in these programs is 100-1,000 acyclic pathso handle exceptions and indirect calls. WPPs, which start with a
long. This result suggests that compiler optimization with a larger run-time trace, easily handles cyclic and indirect control flow, as
perspective might be useful for commercial applications. well as complications such as multiple threads. An interesting
alternative is to use Melski and Rep’s technique in conjunction
6. Related Work with the techniques in this paper. Their algorithm produces a
Ball and Larus’s original path profiling algorithm recorded the different vocabulary of longer paths, which might lead to smaller
execution frequency of intraprocedural, acyclic paths [6]. This grammars.
paper extends that work to paths that cross both procedure an@eyeral researchers have investigated techniques to compress
loop boundaries. ~ Bala’s technique captured segments ofyrogram traces. For example, Larus described Abstract
interprocedural path_s by recording a bounded collection of branchgyecytion, in which a small amount of run-time data guides the
outcomes [5]. Unlike Bala's paths, WPPs completely cover a rg_execution of the address-generating slice of a program [16].
program’s execution and do not introduce approximations at pathp|eszkun developed a two-pass trace compression scheme, which
boundarjes. Moreover, the WPP rfepresentation is more compactged a variable-length encoding of a basic block's dynamic
and easily analyzable than a collection of branches. control successors and compact representation of linear address
Ammons, Ball, and Larus extended acyclic path profiling in two patterns to compress address traces to a fraction of bit per
directions [1]. First, they associated hardware metrics other thanreference [23]. These techniques produce impressively small
execution frequency with paths. Second, they introduced a run-files, but require considerable post-processing to regenerate an
time data structure (the calling context tree) to approximate address trace, which is a far less compact and analyzable entity
interprocedural paths by connecting a path at a call site with athan a WPP.

path in the callee. In practice, these Imka_tges were imprecise, aghen et al. hypothesized that data compression provides an upper
more than one path can reach a call site. Moreover, calling|imit on the performance of correlated branch prediction [9]. This
context trees do not connect paths across loop iterations. Overgllpaper provides evidence to further this connection, as this type of
WPPs are more accurate, compact, and analyzable than callinganch prediction performs well because of programs’ strong path

context trees and capture cyclic paths that span loop boundarie§gcality [28], which also underlies the high compression achieved
However, WPPs require more intermediate storage and postyy the SEQUITUR algorithm.

processing. . . . L
The hot subpath algorithm in Section 4.2 is similar to Baker’s

Melski and Reps describe an interprocedural extension of Ball a”dtechnique for finding repeated code in a program [4]. Baker's
Larus’s acyclic path profiling technique [18, 19]. Instead of jigorithm uses a suffix tree of a program text. This structure is
labeling edges in an interprocedural supergraph with integerimpractical for program traces, as it uncompresses the trace.
values, their technique labels edges with functions, which are usedypp's DAG representation is far more compact, yet still

analyzable. Baker's technique, moreover, finds all repetitions, [2] G. Ammons and J. R. Larus, “Improving Data-flow Analysis
regardless of length. In this application, repetition is only with Path Profiles,” inProceedings of the SSGPLAN '98
valuable when costly, but Baker's approach does not support a Conference on Programming Language Design and
cost metric. Implementation. Montreal, Canada, 1998, pp. 72-84.

; [3] S. Andler, “Predicate Path Expressions,”Hroceedings of
7. Conclusion and Future Work) . the Sxth Annual ACM Symposium on Principles of
Whole program paths are a new representation for dynamic Programming Languages. San Antonio, Texas, 1979, pp.
program analysis that capture a program’s complete control flow 226-236.

in a compact, tractable form. A WPP is a DAG representation of B}) L . .

a context-free grammar that generates a program's acyclic patH4] Bi S'.h Bakera Paramlgter!zed Dsualtlcatlon in Strings:
trace. A two-step processaquuces a WPP. First, the acyclic paths Algorithms and an Application to Software Maintenance,
that a program executes are recorded. Next, this trace is S/AMJournal of Computing, vol. 26, pp. 1343-1362, 1995.
processed with the SEQUITUR compression algorithm, which [5] V. Bala, “Low Overhead Path Profiling,” Hewlett Packard
builds a context-free grammar to represent its input string. A Labs 1996.

grammar's DAG representation is a WPP, which is a compact and[6] T. Ball and J. R. Larus, “Efficient Path Profiling,” in
easily analyzed representation of a program’s control flow. This P.roceedings of .the .29th An,nual IEEE/ACM | nternati on,al
paper shows how to find hot subpaths in a WPP and demonstrates Symposium on Microarchitecture. Paris, France, 1996, pp
that the SPEC benchmarks and commercial applications contain a 46-57 ' ' ' T

significant number of these paths.) -
WPPs have many potential uses. This paper concentrated on the[r7] -Fr,étBhag’roﬁi'lir%ét{ahgea’sﬁgsvd'\gwségigr‘oclzegdﬂﬁgzgltlregz\sﬁrsus

application to performance tuning, in which WPPs identify ACM SIGPLAN-SIGACT Symposium on Principles of

heavily executed code sequences. Programmers or compilers ! :)
could collect and analyze these WPPs to find hot subpaths to i’;%gr ng Languages. San Diego, CA, 1998, pp. 134

optimize or tune. Because WPPs span procedure eog |

boundaries, they expose large-scale optimization opportunities[8] R. Bodik, R. Gupta, and M. L. Soffa, “Refining Data Flow
that cross procedure and module abstractions. Without automatic ~ Information using Infeasible Paths,” Proceedings of the
tools to identify expensive interprocedural paths, large-scale =~ ACM SIGSOFT Fifth Symposum on the Foundations of
performance tuning will remain difficult, costly, and limited to Software Engineering. Zurich, Switzerland, 1997.

high value software, such as OSs and DBs. Moreover, the long[g] |.-C. K. Chen, J. T. Coffey, and T. N. Mudge, “Analysis of
paths identified by WPPs are valuable adenCtS to the global and Branch Prediction via Data Compression,’ﬁmcwjings of
interprocedural optimization that is becoming necessary to the Seventh International Conference on Architectural
support hlgh'y speculative or VLIW micropl’ocessors. Sjpport for Programming Languages and Opera’“ng
Another, more novel application of WPPs is to detect program Systems. Cambridge, MA, 1996, pp. 128-137.

errors that do not manifest themselves as erroneous output{10] E. N. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic

Consider the problem of data structure initialization. A program Verification of Finite-State Concurrent Systems Using
may run correctly when it allocates an uninitialized structure in Temporal Logic Specifications,ACM Transactions on
zeroed memory, but fail when it puts the structure into recycled Programming Languages and Systems, vol. 8, pp. 244-263,
memory. A similar error is accessing shared structuresowit 1986.

acquiring the proper synchronization. This error too may manifest . o . .
itself only under certain conditions. In some cases, these erroréll] J'. A. Fisher, Tracg Sc’hedullng. A Technlque for Global
are detectable by examining a program’s control flow. The idea Microcode Compaction,TEEE Transactions on Computers,

has been used in predicate path expressions to specify vol. C-30, pp. 478-490, 1981.

synchronization constraints [3]. However, temporal logic, as used[12] J. A. Fisher, J. R. Ellis, J. C. Ruttenberg, and A. Nicolau,
in model checking [10], offers a better language for expressing “Parallel Processing: A Smart Compiler and a Dumb
control-flow properties to validate. Machine,” in Proceedings of the ACM SIGPLAN ’'84

Moreover, it seems likely that the same compression technique ~ YMPosium on Compiler Construction. Montreal, Canada,

and data representation can be use to capture and analyze 1984, pp. 37-47.

programs’ data-reference patterns, as well as their control flow. [13] J. Gray, “The Benchmark Handbook for Database and
Transaction Processing Systems, Time Morgan Kaufmann

Acknowledgements Series in Data Management Systems, J. Gray, Ed., second ed.

Christopher Fraser pointed out the SEQUITUR algorithm. Julian San Francisco: Morgan Kaufmann, 1993.

Burger, Vinod Grover, David Melski, and Tom Reps provided d[14] R. Gupta, D. A. Berson, and J. Z. Fang, “Path Profile Guided

many helpful comments. The anonymous referees also provide Partial Dead Code Elimination Using Predication,” in

unusually detailed and helpful feedback. Proceedings of the International Conference on Parallel

References Architecture and Compilation Techniques (PACT). San

" i q | q Francisco, CA, 1997.
1] G. Ammons, T. Ball, and J. R. Larus, “Exploiting Hardware N
Performance Counters with Flow and Context Sensitive [15] Q. Jacobson, E. Rotenberg, and J. E. Smith, “Path-Based

Profiling,” in Proceedings of the SGPLAN "97 Conference Next Trace Prediction,” ifProceedings of the 30th Annual

on Programming Language Design and Implementation. Las lREeEsIZa/iArSI':A'I'Ir?;ﬁ nlzt'gg?ll(S'\l/'g:p(i%g? on Microarchitecture
Vegas, NV, 1997, pp. 85-96. 9 » NC, .

[16] J. R. Larus, “Abstract Execution: A Technique for Efficiently
Tracing Programs,Software--Practice and Experience, vol.
20, pp. 1241-1258, 1990.

[17] J. R. Larus and E. Schnarr, “EEL: Machine-Independent

Executable Editing,” inProceedings of the SSIGPLAN '95
Conference on Programming Language Design and
Implementation. La Jolla, CA, 1995, pp. 291-300.

[18] D. Melski and T. Reps, “Interprocedural Path Profiling,”

IEEE/ACM International Symposium on Microarchitecture
1994, pp. 32-40.

[24] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye,

L. Kethana, J. Walpole, and K. Zhang, “Optimistic
Incremental Specialization: Streamlining a Commercial
Operating System,” irProceedings of the Fifteenth ACM
Symposium on Operating System Principles. Copper
Mountaint Resort, CO, 1995, pp. 314-324.

Computer Sciences Department, University of Wisconsin- [25] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace Cache: a

Madison, Technical Report TR-1382, September 1998.

[19] D. Melski and T. Reps, “Interprocedural Path Profiling,” in
Proceedings of CC '99: 8th International Conference on
Compiler Construction. Amsterdam, The Netherlands, 1999.

Low Latency Approach to High Bandwidth Instruction
Fetching,” in Proceedings of the 29th Annual IEEE/ACM
International Symposium on Microarchitecture. Paris,
France, 1996, pp. 24-34.

[20] D. Mosberger and L. L. Peterson, “Making Paths Explicit in [26] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith, “Trace

the Scout Operating System,” Rroceedings of the Second
USENIX Symposium on Operating Systems Design and
Implementation (OSDI). Seattle, WA, 1996, pp. 153-167.

[21] C. G. Nevill-Manning and I. H. Witten, “Compression and
explanation using hierarchical grammar§he Computer
Journal, vol. 40, pp. 103-116, 1997.

[22] C. G. Nevil-Manning and I. H. Witten, “Linear-time,
incremental hierarchy inference for compression,” in
Proceedings of the Data Compression Conference (DCC
'97). Snowbird, UT: IEEE Computer Society, 1997, pp. 3-11.

[23] A. R. Pleszkun, “Techniques for Compressing Program

Address Traces,” inProceedings of the 27th Annual

Processors,” irProceedings of the 30th Annual IEEE/ACM
International Symposium on Microarchitecture. Research
Triangle Park, NC, 1997, pp. 138-148.

[27] A. Srivastava and A. Eustace, “ATOM A System for

Building Customized Program Analysis Tools,” in
Proceedings of the S GPLAN '94 Conference on
Programming Language Design and Implementation.
Orlando, FL, 1994, pp. 196-205.

[28] C. Young, N. Gloy, and M. D. Smith, “A Comparative

Analysis of Schemes for Correlated Branch Prediction,” in
Proceedings of the 22nd Annual International Symposium on
Computer Architecture, 1995, pp. 276-286.

