
Free Variables and Substitution for MinML

Robert Harper

extracted & edited by A. Appel, 2001

We may define the set of free variables of an expression e, FV(e), as follows:

FV(x) = { x }
FV(n) = ∅

FV(true) = ∅
FV(false) = ∅

FV(o(e1, . . . , en)) = FV(e1) ∪ · · · ∪ FV(en)
FV(if e thene1 else e2 fi) = FV(e) ∪ FV(e1) ∪ FV(e2)

FV(fun f (x:τ1):τ2 is e end) = FV(e)\{ f, x }
FV(apply(e1, e2)) = FV(e1) ∪ FV(e2)

We say that the variable x is free in the expression e iff x ∈ FV(e). An expression e is closed iff
FV(e) = ∅; that is, a closed expression has no free variables.

Capture-avoiding substitution of an expression e for free occurrences of a variable x in another
expression e′, written [e/x]e′, is (partially) defined as follows:

[e/x]x = e
[e/x]n = n

[e/x]true = true
[e/x]false = false

[e/x]o(e1, . . . , en) = o([e/x]e1, . . . , [e/x]en)
[e/x]if e then e1 else e2 fi = if [e/x]e then [e/x]e1 else [e/x]e2 fi

[e/x]fun f (y:τ1):τ2 is e′′ end = fun f (y:τ1):τ2 is e′′ end if x = f or x = y
[e/x]fun f (y:τ1):τ2 is e′′ end = fun f (y:τ1):τ2 is [e/x]e′′ end if { f, y } ∩ (FV(e) ∪ { x }) = ∅

[e/x]apply(e1, e2) = apply([e/x]e1, [e/x]e2)

Simultaneous capture-avoiding substitution, written [e1, . . . , en/x1, . . . , xn]e, is defined in an analo-
gous manner.

Capture-avoiding substitution is undefined if the condition in the penultimate equation is not
met! In this case free occurrences of f or y in e would be captured by the binder for f and y, thereby
erroneously changing the meanings of the “pronouns”. This means, for example, that

[x/y]fun f (x:int):intisx+ y end

is undefined, rather than equal to

fun f (x:int):intisx+ x end,

wherein capture of x has occurred.
The possibility of capture during substitution can always be avoided by renaming of bound vari-

ables.


