Free Variables and Substitution for MinML

Robert Harper

extracted & edited by A. Appel, 2001

We may define the set of free variables of an expression e, FV(e), as follows:

FV(z) = {x}
FV(n) = 0
FV(true) = 0
FV(false) =

FV(o(e1,...,en)) = FV(e1)U---UFV(e,)
FV(if ethenejelseexfi) = FV(e)UFV(e;) UFV(e2)
FV(funf (z:71) 2 iseend) = FV(e)\{f,z}
FV(apply(ei,e2)) = FV(e1) UFV(e2)

We say that the variable x is free in the expression e iff x € FV(e). An expression e is closed iff
FV(e) = 0; that is, a closed expression has no free variables.

Capture-avoiding substitution of an expression e for free occurrences of a variable x in another
expression €', written [e/x]e’, is (partially) defined as follows:

[e/z]lx = e
[e/xln = n
[e/x]true = true
[e/x]false = false
le/eloferr - ren) = olle/aler,..., le/alen)

[e/z]if ethene; elseey fi if [e/x]ethen[e/x]e; else[e/x]es i
[e/x]fun f (y:71) : 2 ise’ end funf (y:7):mmise’end if x=forxz=y
[e/x]fun f (y:71) : T2 ise” end fun f (y:7) e isle/zle” end of {f,y} N (FV(e)U{z})=10

le/x]apply(e1,e2) = apply(le/z]er, [e/x]e2)

Simultaneous capture-avoiding substitution, written [eq, ..., e,/z1,...,2y,]e, is defined in an analo-
gous manner.

Capture-avoiding substitution is undefined if the condition in the penultimate equation is not
met! In this case free occurrences of f or y in e would be captured by the binder for f and y, thereby
erroneously changing the meanings of the “pronouns”. This means, for example, that

[x/y|fun f (z:int) :intisx + yend
is undefined, rather than equal to
fun f (zr:int) :int isx + x end,

wherein capture of x has occurred.
The possibility of capture during substitution can always be avoided by renaming of bound vari-
ables.



