CS 487 - Assignment 7

1. Recall that $A \leq_{m}^{p} B$ if there is a polynomial-time computable f such that x is in A if and only if $f(x)$ is in B. A language L is NP-complete if L is in NP and for all A in NP, $A \leq_{m}^{p} L$.
(a) Show that polynomial-time computable functions are closed under composition.
(b) Show that if $A \leq_{m}^{p} B$ and $B \leq_{m}^{p} C$ then $A \leq_{m}^{p} B$.
(c) Show that if A is NP-complete, $A \leq_{m}^{p} B$ and B is in NP then B is NP-complete.
2. PARTITION is the problem where given a list of integers in binary, is it possible to partition the elements into two groups with the same sum. Show that PARTITION is NP-complete. Hint: Reduce from SUBSET SUM.
3. THREE COLORING consists of the set of graphs that are three colorable, i.e., there is a mapping C from vertices to \{Red, Green, Blue\} such that if $\{u, v\}$ is an edge then $C(u) \neq C(v)$. Show that THREE COLORING is NP-complete. Hint: Use the subgraphs given in problem 7.34 on page 275 of Sipser.
4. Show that if $\mathrm{P}=\mathrm{NP}$ then there is a polynomial-time computable function f such that given a satisfiable Boolean formula $\phi, f(\phi)$ is a satisfying assignment of ϕ.
5. PRIMES consists of the set of numbers m written in binary such that there are no $u, 1<u<m$ with u dividing m. Show that PRIMES is in NP. You may use the following result from number theory without proof.

Theorem: A number $p>2$ is prime if and only if there is a number r, $1<r<p$ such that p divides $r^{p-1}-1$ and p does not divide $r^{\frac{p-1}{q}}-1$ for all prime divisors q of $p-1$.

