CS 487 – Assignment 5

A set A is co-recognizable if \overline{A} is recognizable.

- 1. Recall the definition of 2SPDA from the midterm. Show that L is recognized by a 2SPDA if and only if L is recognizable.
- 2. A set A separates sets B and C if $B \subseteq A$ and $C \subseteq \overline{A}$. Show that every pair of disjoint co-recognizable sets have a decidable separator.
- 3. Show there exist two disjoint recognizable sets that have no decidable separator.
- 4. Consider the set

INF = {
$$\langle M \rangle \mid L(M)$$
 is infinite}.

- (a) Show that HALT \leq INF.
- (b) Show that HALT $\leq \overline{INF}$.
- (c) Conclude that INF is neither recognizable or co-recognizable.
- 5. Let DIAG = { $\langle M \rangle \mid M$ on input $\langle M \rangle$ does not accept}.
 - (a) Suppose that for some Turing machine $M, L(M) \subseteq$ DIAG. Show that $\langle M \rangle$ is in DIAG L(M).
 - (b) Using this result, show that there exists a computable function such that given the description of a consistent theory produces a true statement that is not provable in that theory.
 - (c) You have just proven that a statement is true and has no proof. Why is this not a logical contradiction?