CS 487 – Assignment 3

Recall $\mathbf{reverse}(x)$ is the string x written in reverse order. For example, $\mathbf{reverse}(01001) = 10010$. Assume all strings are over the alphabet $\Sigma = \{0, 1\}$.

- 1. Which of the following languages are regular? Prove your answers.
 - (a) $\{0^{2n} \mid n \ge 1\}.$
 - (b) $\{0^m 1^n 0^{m+n} \mid m \ge 1 \text{ and } n \ge 1\}.$
 - (c) $\{0^m \mid m \text{ is prime}\}.$
 - (d) $\{x \mid x \neq \mathbf{reverse}(x)\}.$
 - (e) The set of all strings that do not have three consecutive zeros.
 - (f) $\{xyz \mid |x| > 0, |y| > 0 \text{ and } z = \mathbf{reverse}(x)\}.$
 - (g) $\{xyz \mid |x| > 0, |z| > 0 \text{ and } y = \mathbf{reverse}(x)\}.$
- 2. Does the language (1d) above fulfill the pumping lemma? Prove your answer.
- 3. Consider the language of palindromes, $L = \{x \mid x = \mathbf{reverse}(x)\}$.
 - (a) Give a context-free grammar for L.
 - (b) Give a derivation and parse tree for 010010.
 - (c) Convert your grammar to Chomsky normal form.