CS 487 - Assignment 2

1. Consider the regular expression

$$
(0 \cup 11) 0^{*} 1
$$

(a) Convert this regular expression into a nondeterministic finite automaton with ϵ-moves.
(b) Convert this nondeterministic automata to a deterministic automaton.
2. Write regular expressions for each of the following languages over the alphabet $\{0,1\}$. Provide justification for your answers.
(a) The set of all strings not containing 101 as a substring.
(b) The set of all strings with at most one pair of consecutive 0 's and at most one pair of consecutive 1's.
3. Let reverse (x) be the reverse of a string x. For example,

$$
\operatorname{reverse}(01001)=10010
$$

Show that if L is regular than so is

$$
\operatorname{reverse}(L)=\{\operatorname{reverse}(x) \mid x \in L\}
$$

4. Show by giving an example that, if M is an NFA that recognizes a language C, swapping the accept and non-accept states in M doesn't necessarily yield a new NFA recognizes the complement of C. Is the class of languages recognized by NFAs closed under complement? Explain your answer.
