Applications of Computer Graphics in Cel Animation

Adam Finkelstein
Princeton University

3-D and 2-D animation

Advantages of 3-D
- Complex lighting and shading
- Reuse from scene to scene
- Automatic in-betweening
- Ease of camera motion
- Realism
- Texture mapping

Advantages of 2-D
- Easier for traditional animators
- Simple gestures convey emotion
- Art form refined for 80 years

Key idea
Use 3-D methods in 2-D animation!
- Expressiveness of 2-D
- Technical benefits of 3-D

Related work
Automating cel animation pipeline
[Fekete 95, Robertson 94, Shantzis 94, Wallace 81]
Hybrid 2D/3D for cel animation
[Rademacher 99, Williams 91]
Two forms of art work

Overview

- Introduction
- Multiperspective panoramas
- Texture mapping
- Shadows

Multiperspective Panoramas
for Cel Animation

Daniel Wood
Adam Finkelstein
John Hughes
Craig Thayer
David Salesin

University of Washington
Princeton University
Brown University
Disney Feature Animation

[SIGGRAPH '98]

Suggesting a moving camera

A multiperspective panorama incorporates many perspectives into a single locally coherent image.

A moving window slides across the panorama, selecting frames for the animation.

[Pinocchio, 1940]
Objective

Given: 3D model and camera path

Create: Panorama and moving window such that the 2D animation resembles the 3D animation

1. 3-D scene and camera path

2. Panorama and moving window

3. Illustrated panorama

4. Extracted frames

5. CG Elements
Creating a panorama

- Take snapshots of 3D scene
- Arrange snapshots in a plane
- Merge snapshots into single image

Arrange consecutive snapshots

1. Sample points from first snapshot
2. Find corresponding points on second snapshot
3. Align snapshots using a transform
Limitations

Panoramas cannot do it all (e.g., circling centerpiece of table)

Our method does not do it all (e.g., Beauty and the Beast library)
Strengths

- Wide variety of camera motion
- Easy experimentation
- Easy CG integration
- Illustrator creates detail
- Hand-drawn artistic style

Texture Mapping for Cel Animation

Wagner Corrêa
Rob Jensen
Craig Thayer
Adam Finkelstein

Princeton University
Disney Feature Animation

[SIGGRAPH '98]

Traditional cel animation

![Traditional cel animation](image1)

Textured cel animation

![Textured cel animation](image2)

The process

![The process](image3)

Input of the warp

![Input of the warp](image4)
Marker curves

Input of the warp

Output of the warp

A pair of marker curves

At parameter \(t \)

Many parameter values

Model marker

drawing marker

\(P \) Q

\(P \) Q

\(M(t) \) \(D(t) \)
Output of the warp

Controlling the warp
- Weights
- Viewing parameters
- Extra markers

Viewing parameters
- upright
- tilted

Extra markers
- without
- with

Video

Limitations
Strengths

- Fits into current production pipeline
- Little effort per frame
- Avoids temporal artifacts
- Combines strengths of:
 - 2-D: gestures, timing, anticipation
 - 3-D: texture, occlusion, foreshortening

Shadows for Cel Animation

Lena Petrović
Brian Fujito
Lance Williams
Adam Finkelstein

Princeton University
Disney Feature Animation

[SIGGRAPH '00]

Motivation

- character
- background
- scene

Shadow Mattes

- cast shadows (red) - shadows on background
- tone mattes (blue) - character shading
- contact shadows (green) - darkness underfoot
Project Goal

Approach: 3D Models

Process: Overview

- Background Construction
- Character Inflation
- Depth Specification
- Specifying Lights
- Rendering
- Compositing

Process: Overview

- Background Construction
- Character Inflation
- Depth Specification
- Specifying Lights
- Rendering
- Compositing

Process: Overview

- Background Construction
- Character Inflation
- Depth Specification
- Specifying Lights
- Rendering
- Compositing

Process: Overview

- Background Construction
- Character Inflation
- Depth Specification
- Specifying Lights
- Rendering
- Compositing
Process: Overview

- Background Construction
- Character Inflation
- Depth Specification
- Specifying Lights
- Rendering
- Compositing

Character Inflation

Inflate 3-D shapes using Teddy [Igarashi 99]
- Two caveats: perspective & layers

First layer

Adding a second layer

Adding a third layer
Character Inflation

Obtaining layers

line art → layers → 3D model

camera view → off-angle view

Depth Specification

Adjust depth while preserving silhouette

translation → shear

camera view → off-angle view

Compositing

Tone matte (blue) modifies character color.
Other mattes (red & green) darken background.

Video

33 frames → 16-frame cycle → 16-frame cycle
<table>
<thead>
<tr>
<th>Limitations</th>
<th>Strengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual creation of character layers</td>
<td>• Less human effort than hand-drawn</td>
</tr>
<tr>
<td>No aesthetic controls for:</td>
<td>• Plausible shadows</td>
</tr>
<tr>
<td>• shadow simplification</td>
<td>– even in complex scenes</td>
</tr>
<tr>
<td>• shadow stylization</td>
<td>• Lighting effects:</td>
</tr>
<tr>
<td></td>
<td>– animated lights, gobos</td>
</tr>
<tr>
<td></td>
<td>• Freedom to experiment with lights</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conclusions</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D methods may be used in 2D for:</td>
<td>Lines between 3D and 2D are blurring</td>
</tr>
<tr>
<td>• reducing human effort</td>
<td></td>
</tr>
<tr>
<td>• achieving new effects</td>
<td></td>
</tr>
<tr>
<td>Lines between 3D and 2D are blurring</td>
<td></td>
</tr>
</tbody>
</table>