Model Construction

Adam Finkelstein
Princeton University
COS 426, Fall 2001

Modeling

How do we ...

- Represent 3D objects in a computer?
- Construct such representations quickly and/or automatically with a computer?
- Manipulate 3D objects with a computer?

Interactive Modeling Tools

- User constructs objects with drawing program
 - Menu commands, direct manipulation, etc.
 - CSG, parametric surfaces, quadrics, etc.

Model Construction

- Interactive modeling tools
 - CAD programs
 - Subdivision surface editors :)
- Scanning tools
 - CAT, MRI, laser, magnetic, robotic arm, etc.
- Computer vision
 - Stereo, motion, etc.
- Procedural generation
 - Sweeps, fractals, grammars

Example: Mechanical CAD
Model Construction

- Interactive modeling tools
 - CAD programs
 - Subdivision surface editors
- Scanning tools
 - Laser, magnetic, robotic arm, etc.
- Computer vision
 - Stereo, motion, etc.
- Procedural generation
 - Sweeps, fractals, grammars

Scanning tools

- Acquire geometry of objects with active sensors
 - CAT/MRI
 - Laser range scanner
 - Magnetic sensor
 - Robotic arm
 - etc.

Scanning tools

- Acquire geometry of objects with active sensors
 - CAT/MRI
 - Laser range scanner
 - Magnetic sensor
 - Robotic arm
 - etc.

Laser Range Scanning

- Example: 70 scans
 - Volumetric reconstruction
Model Construction

- Interactive modeling tools
 - CAD programs
 - Subdivision surface editors :)
- Scanning tools
 - Laser, magnetic, robotic arm, etc.
- Computer vision
 - Stereo, motion, etc.
- Procedural generation
 - Sweeps, fractals, grammars

Computer Vision

- Infer 3D geometry from images
 - Stereo
 - Motion
 - Constraints
 - etc.

Procedural Modeling

- Goal:
 - Describe 3D models algorithmically
- Best for models resulting from ...
 - Repeating processes
 - Self-similar processes
 - Random processes
- Advantages:
 - Automatic generation
 - Concise representation
 - Parameterized classes of models
Procedural Modeling

- Sweeps
- Fractals
- Grammars

Example: Seashells

- Sweep generating curve around helico-spiral axis

Helico-spiral definition:

\[
\begin{align*}
\Theta_{i+1} &= \Theta_i + \Delta \theta \\
r_{i+1} &= r_i \lambda \\
z_{i+1} &= z_i \lambda
\end{align*}
\]

Example: Seashells

- Connect adjacent points to form polygonal mesh

Model is parameterized:

- Helico-spiral: \(z_0, \lambda, r_0, N_0, \Delta \theta \)
- Generating curve: shape, \(N_c, \lambda_c \)

Example: Seashells

- Create 3D polygonal surface models of seashells

Example: Seashells

- Generate different shells by varying parameters

Example: Seashells
- Generate different shells by varying parameters

Example: Seashells
- Generate many interesting shells with a simple procedural model!

Procedural Modeling
- Sweeps
- Fractals
- Grammars

Fractals
- Defining property:
 - Self-similar with infinite resolution

Fractals
- Useful for describing natural 3D phenomenon
 - Terrain
 - Plants
 - Clouds
 - Water
 - Feathers
 - Fur
 - etc.

Fractal Generation
- Deterministically self-similar fractals
 - Parts are scaled copies of original
- Statistically self-similar fractals
 - Parts have same statistical properties as original
Deterministic Fractal Generation

- General procedure:
 - Initiator: start with a shape
 - Generator: replace subparts with scaled copy of original

Deterministic Fractal Generation

- Apply generator repeatedly

Koch Curve

Deterministic Fractal Generation

- Useful for creating interesting shapes!

Mandelbrot Figure X

Deterministic Fractal Generation

- Useful for creating interesting shapes!

Mandelbrot Figure 46

Deterministic Fractal Generation

- Useful for creating interesting shapes!

H&B Figures 75 & 109

Fractal Generation

- Deterministically self-similar fractals
 - Parts are scaled copies of original

- Statistically self-similar fractals
 - Parts have same statistical properties as original
Statistical Fractal Generation

- General procedure:
 - Initiator: start with a shape
 - Generator: replace subparts with a self-similar random pattern

Random Midpoint Displacement

Example: terrain

Useful for creating mountains

Useful for creating 3D plants

Procedural Modeling

- Sweeps
- Fractals
- Grammars
Grammars

- Generate description of geometric model by applying production rules

\[
\begin{align*}
S & \rightarrow AB \\
A & \rightarrow Ba \mid a \\
B & \rightarrow Ab \mid b
\end{align*}
\]

ab
babaab
abaab

Grammars

- Useful for creating plants

Tree \rightarrow Branch Tree \mid Leaf
Branch \rightarrow Cylinder \mid [Tree]

C[CL]C[CL][CL][CL][CL][CL]
C[^*][^*][^*]

Summary

- Interactive modeling tools
 - CAD programs
 - Subdivision surface editors :)
- Scanning tools
 - CAT, MRI, Laser, magnetic, robotic arm, etc.
- Computer vision
 - Stereo, motion, etc.
- Procedural generation
 - Sweeps, fractals, grammars

Constructing 3D models is hard!