Overview of 3D Object Representations

Emil Praun
(covering for Finkelstein)
Princeton University
COS 426, Fall 2000

Course Syllabus
I. Image processing
II. Rendering
III. Modeling
IV. Animation

Modeling
• How do we ...
 ▪ Represent 3D objects in a computer?
 ▪ Construct such representations quickly and/or automatically with a computer?
 ▪ Manipulate 3D objects with a computer?

Different methods for different object representations

3D Objects
How can this object be represented in a computer?

3D Objects
This one?
3D Objects

How about this one?

Lorensen

This one?

H&B Figure 9.9

This one?

Representations of Geometry

- 3D Representations provide the foundations for

- They are languages for describing geometry

 Semantics
 - values
 - operations

 Syntax
 - data structures
 - algorithms

- Data structures determine algorithms!

3D Object Representations

- Raw data
 - Point cloud
 - Range image
 - Polygon soup

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- High-level structures
 - Scene graph
 - Skeleton
 - Application specific
Point Cloud
- Unstructured set of 3D point samples
 - Acquired from range finder, computer vision, etc

Range Image
- Set of 3D points mapping to pixels of depth image
 - Acquired from range scanner

Polygon Soup
- Unstructured set of polygons
 - Created with interactive modeling systems?

3D Object Representations
- Raw data
 - Point cloud
 - Range image
 - Polygon soup
- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep
- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit
- High-level structures
 - Scene graph
 - Skeleton
 - Application specific

Mesh
- Connected set of polygons (usually triangles)
 - May not be closed

Subdivision Surface
- Coarse mesh & subdivision rule
 - Define smooth surface as limit of sequence of refinements
Parametric Surface
- Tensor product spline patches
 - Careful constraints to maintain continuity

Implicit Surface
- Points satisfying: $F(x,y,z) = 0$

3D Object Representations
- Raw data
 - Point cloud
 - Range image
 - Polygon soup
- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit
- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep
- High-level structures
 - Scene graph
 - Skeleton
 - Application specific

Voxels
- Uniform grid of volumetric samples
 - Acquired from CAT, MRI, etc.

BSP Tree
- Binary space partition with solid cells labeled
 - Constructed from polygonal representations

CSG
- Hierarchy of boolean set operations (union, difference, intersect) applied to simple shapes
Sweep
• Solid swept by curve along trajectory

3D Object Representations
• Raw data
 - Point cloud
 - Range image
 - Polygon soup
• Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep
• Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit
• High-level structures
 - Scene graph
 - Skeleton
 - Application specific

Scene Graph
• Union of objects at leaf nodes

Skeleton
• Graph of curves with radii

Application Specific

Taxonomy of 3D Representations
Equivalence of Representations

- Thesis:
 - Each fundamental representation has enough expressive power to model the shape of any geometric object.
 - It is possible to perform all geometric operations with any fundamental representation!

- Analogous to Turing-Equivalence:
 - All computers today are turing-equivalent, but we still have many different processors.

Computational Differences

- Efficiency
 - Combinatorial complexity (e.g. \(O(n \log n) \))
 - Space/time trade-offs (e.g. z-buffer)
 - Numerical accuracy/stability (degree of polynomial)

- Simplicity
 - Ease of acquisition
 - Hardware acceleration
 - Software creation and maintenance

- Usability
 - Designer interface vs. computational engine

Complexity vs. Verbosity Tradeoff

- Verbosity / Inaccuracy
 - Pixels/voxels
 - Piecewise linear polyhedra
 - Low degree piecewise non-linear
 - Single general functions

- Complexity / Accuracy

Summary

- Raw data
 - Point cloud
 - Range image
 - Polygon soup

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- High-level structures
 - Scene graph
 - Skeleton
 - Application specific