Texture Mapping

Adam Finkelstein
Princeton University
COS 426, Fall 2001

Textures

- Describe color variation in interior of 3D polygon
 - When scan converting a polygon, vary pixel colors according to values fetched from a texture

3D Rendering Pipeline (for direct illumination)

Surface Textures

- Add visual detail to surfaces of 3D objects

Surface Textures

- Add visual detail to surfaces of 3D objects

Overview

- Texture mapping methods
 - Parameterization
 - Mapping
 - Filtering

- Texture mapping applications
 - Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering
 - Non-photorealistic rendering
Parameterization

geometry + image = texture map

Q: How do we decide where on the geometry each color from the image should go?

Option: Varieties of projections

[Paul Bourke]

Option: unfold the surface

[Piponi2000]

Option: make an atlas

charts, atlas, surface

[Sander2001]

Overview

• Texture mapping methods
 ⮝ Parameterization
 ⮝ Mapping
 ⮝ Filtering

• Texture mapping applications
 ⮝ Modulation textures
 ⮝ Illumination mapping
 ⮝ Bump mapping
 ⮝ Environment mapping
 ⮝ Image-based rendering
 ⮝ Non-photorealistic rendering

Texture Mapping

• Steps:
 ⮝ Define texture
 ⮝ Specify mapping from texture to surface
 ⮝ Lookup texture values during scan conversion

Modeling Coordinate System

Image Coordinate System

Modeling Coordinate System

Texture Coordinate System
Texture Mapping

• When scan convert, map from …
 - image coordinate system (x,y) to
 - modeling coordinate system (u,v) to
 - texture image (t,s)

Texture Coordinate System Modeling Coordinate System Image Coordinate System

(x,y) (u,v) (t,s)

(0,0) (1,0) (0,1) (1,1)

Texture Mapping

• Texture mapping is a 2D projective transformation
 - texture coordinate system: (t,s) to
 - image coordinate system (x,y)

Texture Mapping

• Scan conversion
 - Interpolate texture coordinates down/across scan lines
 - Distortion due to bilinear interpolation approximation
 » Cut polygons into smaller ones, or
 » Perspective divide at each pixel

Texture Mapping

Linear interpolation of texture coordinates Correct interpolation with perspective divide

Overview

• Texture mapping methods
 - Parameterization
 - Mapping
 - Filtering

• Texture mapping applications
 - Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering
 - Non-photorealistic rendering

Texture Filtering

• Must sample texture to determine color at each pixel in image
Texture Filtering

- Aliasing is a problem

Point sampling Area filtering

- Ideally, use elliptically shaped convolution filters

In practice, use rectangles

Texture Filtering

- Size of filter depends on projective warp
 - Can prefiltering images
 - Mip maps
 - Summed area tables

Magnification Minification

Mip Maps

- Keep textures prefiltered at multiple resolutions
 - For each pixel, linearly interpolate between two closest levels (e.g., trilinear filtering)
 - Fast, easy for hardware

Summed-area tables

- Keep at each texel the sum of all values down & right
 - To compute sum of all values within a rectangle, simply subtract two entries
 - Better ability to capture very oblique projections
 - But, cannot store values in a single byte

Overview

- Texture mapping methods
 - Parameterization
 - Mapping
 - Filtering
- Texture mapping applications
 - Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering
 - Non-photorealistic rendering
Modulation textures

Map texture values to scale factor

Wood texture

Texture value

Illumination Mapping

Map texture values to surface material parameter

- K_a
- K_d
- K_s
- K_t
- n

$$K_t = T(s,t)$$

Bump Mapping

Map texture values to perturbations of surface normals

Environment Mapping

Map texture values to perturbations of surface normals

Image-Based Rendering

Map photographic textures to provide details for coarsely detailed polygonal model
Summary

- Texture mapping methods
 - Parameterization
 - Mapping
 - Filtering
- Texture mapping applications
 - Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering
 - Non-photorealistic rendering