Modeling Transformations

Adam Finkelstein
Princeton University
COS 426, Fall 2001

Overview

- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- 3D Transformations
 - Basic 3D transformations
 - Same as 2D
- Transformation Hierarchies
 - Scene graphs
 - Ray casting

2D Modeling Transformations

- Scale
- Rotate
- Translate

Let's look at this in detail…
2D Modeling Transformations

Modeling Coordinates

Scale 0.3, 0.3

2D Modeling Transformations

Modeling Coordinates

Scale 0.3, 0.3

Rotate -90

Transformations can be combined (with simple algebra)

Basic 2D Transformations

• Translation:
 \(x' = x + t_x \)
 \(y' = y + t_y \)

• Scale:
 \(x' = x \times s_x \)
 \(y' = y \times s_y \)

• Shear:
 \(x' = x + h_x y \)
 \(y' = y + h_y x \)

• Rotation:
 \(x' = x \cos \Theta - y \sin \Theta \)
 \(y' = x \sin \Theta + y \cos \Theta \)
Basic 2D Transformations

- **Translation:**
 - \(x' = x + tx \)
 - \(y' = y + ty \)
- **Scale:**
 - \(x' = x \times sx \)
 - \(y' = y \times sy \)
- **Shear:**
 - \(x' = x + hx'y \)
 - \(y' = y + hy'x \)
- **Rotation:**
 - \(x' = x \cos \Theta - y \sin \Theta \)
 - \(y' = x \sin \Theta + y \cos \Theta \)

Matrix Representation

- Represent 2D transformation by a matrix
 \[
 \begin{bmatrix}
 a & b \\
 c & d \\
 \end{bmatrix}
 \]
- Multiply matrix by column vector
 \[\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \]
 \(x' = ax + by \)
 \(y' = cx + dy \)

Overview

- **2D Transformations**
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- **3D Transformations**
 - Basic 3D transformations
 - Same as 2D
- **Transformation Hierarchies**
 - Scene graphs
 - Ray casting

Matrices are a convenient and efficient way to represent a sequence of transformations!
Linear Transformations

- What types of transformations can be represented with a 2x2 matrix?

2D Identity?
\[\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \]

2D Scale around (0,0)?
\[\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \cdot a \\ y \cdot b \end{pmatrix} \]

2D Mirror over Y axis?
\[\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \]

2D Mirror over (0,0)?
\[\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \]

2D Rotate around (0,0)?
\[\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \]

2D Shear?
\[\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & sy \cdot x \\ sh \cdot y & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \]

2D Translation?
\[\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x + tx \\ y + ty \end{pmatrix} \]

Only linear 2D transformations can be represented with a 2x2 matrix.

2D Translation represented by a 3x3 matrix
\[\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \]

- What types of transformations can be represented with a 2x2 matrix?

- Properties of linear transformations:
 - Satisfies: \(\Gamma(s, p_1 + s_2, p_2) = s_1 \Gamma(p_1) + s_2 \Gamma(p_2) \)
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

Point represented with homogeneous coordinates
\[\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \]
Homogeneous Coordinates
- Add a 3rd coordinate to every 2D point
 - \((x, y, w)\) represents a point at location \((x/w, y/w)\)
 - \((x, y, 0)\) represents a point at infinity
 - \((0, 0, 0)\) is not allowed

Convenient coordinate system to represent many useful transformations

Basic 2D Transformations
- Basic 2D transformations as 3x3 matrices

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
- Translate

\[
\begin{pmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1
\end{pmatrix}
\]

- Scale

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

- Rotate

\[
\begin{pmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta & \cos\theta & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

- Shear

\[
\begin{pmatrix}
1 & s_x & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

Affine Transformations
- Affine transformations are combinations of ...
 - Linear transformations, and
 - Translations

\[
\begin{pmatrix}
x' \\
y' \\
w'
\end{pmatrix} = \begin{pmatrix} a & b & c \\
d & e & f \\
0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\
y \\
w \end{pmatrix}
\]

- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

Projection Transformations
- Projective transformations ...
 - Affine transformations, and
 - Projective warps

\[
\begin{pmatrix}
x' \\
y' \\
w'
\end{pmatrix} = \begin{pmatrix} a & b & c \\
d & e & f \\
g & h & i \end{pmatrix} \begin{pmatrix} x \\
y \\
w \end{pmatrix}
\]

- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved (but “cross-ratios” are)
 - Closed under composition

Overview
- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- 3D Transformations
 - Basic 3D transformations
 - Same as 2D
- Transformation Hierarchies
 - Scene graphs
 - Ray casting
- 3D Transformations
 - Linear transformations, and
 - Translations

\[
\begin{pmatrix}
x' \\
y' \\
w'
\end{pmatrix} = \begin{pmatrix} a & b & c \\
d & e & f \\
0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\
y \\
w \end{pmatrix}
\]

- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

Matrix Composition
- Transformations can be combined by matrix multiplication

\[
\begin{pmatrix}
x' \\
y' \\
w'
\end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\
\sin\theta & \cos\theta & 0 \\
0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\
y \\
w \end{pmatrix}
\]

- Projection Transformations

\[
\begin{pmatrix}
x' \\
y' \\
w'
\end{pmatrix} = \begin{pmatrix} a & b & c \\
d & e & f \\
g & h & i \end{pmatrix} \begin{pmatrix} x \\
y \\
w \end{pmatrix}
\]

- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved (but “cross-ratios” are)
 - Closed under composition

Overview

- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- 3D Transformations
 - Basic 3D transformations
 - Same as 2D
- Transformation Hierarchies
 - Scene graphs
 - Ray casting

Matrix Composition
- Transformations can be combined by matrix multiplication
Matrix Composition

- Matrices are a convenient and efficient way to represent a sequence of transformations
 - General purpose representation
 - Hardware matrix multiply
 - Efficiency with premultiplication
 - Matrix multiplication is associative

\[p' = (T \cdot (R \cdot (S \cdot p))) \]
\[p' = (T \cdot R \cdot S) \cdot p \]

Matrix Composition

- Be aware: order of transformations matters
 - Matrix multiplication is not commutative

\[p' = T \cdot R \cdot S \cdot p \]

Overview

- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition

- 3D Transformations
 - Basic 3D transformations
 - Same as 2D

- Transformation Hierarchies
 - Scene graphs
 - Ray casting

3D Transformations

- Same idea as 2D transformations
 - Homogeneous coordinates: (x,y,z,w)
 - 4x4 transformation matrices

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 w'
\end{bmatrix} =
\begin{bmatrix}
 a & b & c & d \\
 e & f & g & h \\
 i & j & k & l \\
 m & n & o & p
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix}
\]

Basic 3D Transformations

- Identity
- Scale
- Translation
- Mirror over X axis
Basic 3D Transformations

Rotate around Z axis:
\[
\begin{pmatrix}
 x' \\
y' \\
z' \\
w'
\end{pmatrix} =
\begin{pmatrix}
 \cos \Theta & -\sin \Theta & 0 & 0 \\
 \sin \Theta & \cos \Theta & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x \\
y \\
z \\
w
\end{pmatrix}
\]

Rotate around Y axis:
\[
\begin{pmatrix}
 x' \\
y' \\
z' \\
w'
\end{pmatrix} =
\begin{pmatrix}
 \cos \Theta & 0 & -\sin \Theta & 0 \\
 0 & 1 & 0 & 0 \\
 \sin \Theta & 0 & \cos \Theta & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x \\
y \\
z \\
w
\end{pmatrix}
\]

Rotate around X axis:
\[
\begin{pmatrix}
 x' \\
y' \\
z' \\
w'
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & \cos \Theta & -\sin \Theta & 0 \\
 0 & \sin \Theta & \cos \Theta & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x \\
y \\
z \\
w
\end{pmatrix}
\]

Transformation Hierarchies

- Scene may have hierarchy of coordinate systems
 - Each level stores matrix representing transformation from parent’s coordinate system

Robot Arm

Transformation Example 1
- Mike Marr, COS 426, Princeton University, 1995

Transformation Example 2
- An object may appear in a scene multiple times
- Draw same 3D data with different transformations

Overview

- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- 3D Transformations
 - Basic 3D transformations
 - Same as 2D
- Transformation Hierarchies
 - Scene graphs
 - Ray casting

Transformation Example 1
- Rose et al. ’96

Transformation Example 2
- Rose et al. ’96

Angel Figures 8.8 & 8.9
Transformation Example 2

Building
Floor 1 Floor 2 Floor 3 Floor 4 Floor 5
Floor Furniture Office 1 Office N
Office Furniture

Bookshelf 1 Desk 1 Desk 2 Chair 1 Chair K
Bookshelf Desk Chair

Definitions

Ray Casting With Hierarchies

• Transform rays, not primitives
 • For each node...
 » Transform ray by inverse of matrix
 » Intersect with primitives
 » Transform hit by matrix

Base
[M1]
Upper Arm
[M2]
Lower Arm
[M3]

Robot Arm

Angel Figures 8.8 & 8.9

Summary

• Coordinate systems
 » World coordinates
 » Modeling coordinates

• Representations of 3D modeling transformations
 » 4x4 Matrices
 » Scale, rotate, translate, shear, projections, etc.
 » Not arbitrary warps

• Composition of 3D transformations
 » Matrix multiplication (order matters)
 » Transformation hierarchies