
1

1

Illumination

Adam Finkelstein

Princeton University

C0S 426, Fall 2001

2

Ray Casting

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(scene, ray, hit);

}
}
return image;

}

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(scene, ray, hit);

}
}
return image;

}

Wireframe

3

Ray Casting

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(scene, ray, hit);

}
}
return image;

}

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(scene, ray, hit);

}
}
return image;

}

Without Illumination

4

Ray Casting

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(scene, ray, hit);

}
}
return image;

}

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(scene, ray, hit);

}
}
return image;

}

With Illumination

5

Illumination

• How do we compute radiance for a sample ray?

Angel Figure 6.2

image[i][j] = GetColor(scene, ray, hit);

6

Goal

• Must derive computer models for ...
ο Emission at light sources
ο Scattering at surfaces
ο Reception at the camera

• Desirable features …
ο Concise
ο Efficient to compute
ο “Accurate”

2

7

Overview

• Direct Illumination
ο Emission at light sources
ο Scattering at surfaces

• Global illumination
ο Shadows
ο Refractions
ο Inter-object reflections

Direct Illumination

8

Modeling Light Sources

• IL(x,y,z,θ,φ,λ) ...
ο describes the intensity of energy,
ο leaving a light source, …
ο arriving at location(x,y,z), ...
ο from direction (θ,φ), ...
ο with wavelength λ (x,y,z)

Light

9

Empirical Models

• Ideally measure irradiant energy for “all” situations
ο Too much storage
ο Difficult in practice

λ

10

OpenGL Light Source Models

• Simple mathematical models:
ο Point light
ο Directional light
ο Spot light

11

Point Light Source

• Models omni-directional point source
ο intensity (I0),
ο position (px, py, pz),
ο factors (kc, kl, kq) for attenuation with distance (d)

2
qlc

0

kkk

I

dd
IL ++

=

d

Light

(px, py, pz)

12

Directional Light Source

• Models point light source at infinity
ο intensity (I0),
ο direction (dx,dy,dz)

0IIL =

(dx, dy, dz)

No attenuation
with distance

3

13

Spot Light Source

• Models point light source with direction
ο intensity (I0),
ο position (px, py, pz),
ο direction (dx, dy, dz)
ο attenuation

2
qlc

0

kkk

)(I

dd

LD
IL ++

•=

d

Light

(px, py, pz)
D

L γ

14

Overview

• Direct Illumination
ο Emission at light sources
ο Scattering at surfaces

• Global illumination
ο Shadows
ο Refractions
ο Inter-object reflections

Direct Illumination

15

Modeling Surface Reflectance

• Rs(θ,φ,γ,ψ,λ) ...
ο describes the amount of incident energy,
ο arriving from direction (θ,φ), ...
ο leaving in direction (γ,ψ), …
ο with wavelength λ

Surface

(θ,φ)

(ψ,λ)

λ

16

Empirical Models

• Ideally measure radiant energy for “all”
combinations of incident angles
ο Too much storage
ο Difficult in practice

Surface

(θ,φ)

(ψ,λ)

λ

17

OpenGL Reflectance Model

• Simple analytic model:
ο diffuse reflection +
ο specular reflection +
ο emission +
ο “ambient”

Surface

Based on model
proposed by Phong
Based on model

proposed by Phong

18

OpenGL Reflectance Model

• Simple analytic model:
ο diffuse reflection +
ο specular reflection +
ο emission +
ο “ambient”

Surface

Based on Phong
illumination model
Based on Phong
illumination model
Based on model

proposed by Phong
Based on model

proposed by Phong

4

19

Diffuse Reflection

• Assume surface reflects equally in all directions
ο Examples: chalk, clay

Surface

20

Diffuse Reflection

• How much light is reflected?
ο Depends on angle of incident light

Surface

dL

Θ= cosdAdL

dA

θ

21

Diffuse Reflection

• Lambertian model
ο cosine law (dot product)

LDD ILNKI)(•=

Surface

N

L
θ

22

OpenGL Reflectance Model

• Simple analytic model:
ο diffuse reflection +
ο specular reflection +
ο emission +
ο “ambient”

Surface

23

Specular Reflection

• Reflection is strongest near mirror angle
ο Examples: mirrors, metals

N

L
R θθ

24

Specular Reflection

How much light is seen?

Depends on:
ο angle of incident light
ο angle to viewer

N

L
R

V

Viewer

α
θθ

5

25

Specular Reflection

• Phong Model
ο cos(α)n

L
n

SS IRVKI)(•=

N

L
R

V

Viewer

α
θθ

26

OpenGL Reflectance Model

• Simple analytic model:
ο diffuse reflection +
ο specular reflection +
ο emission +
ο “ambient”

Surface

27

Emission

Emission ≠ 0Emission ≠ 0

• Represents light eminating directly from polygon

28

OpenGL Reflectance Model

• Simple analytic model:
ο diffuse reflection +
ο specular reflection +
ο emission +
ο “ambient”

Surface

29

Ambient Term

This is a total hack (avoids complexity of global illumination)!

• Represents reflection of all indirect illumination

30

OpenGL Reflectance Model

• Simple analytic model:
ο diffuse reflection +
ο specular reflection +
ο emission +
ο “ambient”

Surface

6

31

OpenGL Reflectance Model

• Simple analytic model:
ο diffuse reflection +
ο specular reflection +
ο emission +
ο “ambient”

Surface

32

OpenGL Reflectance Model

• Sum diffuse, specular, emission, and ambient

Leonard McMillan, MIT

33

Surface Illumination Calculation

• Single light source:

L
n

SLDALAE IRVKILNKIKII)()(•+•++=

N

L
R

V

Viewer

α
θθ

34

Surface Illumination Calculation

• Multiple light sources:

))()((∑ •+•++=
i i

n
iSiiDALAE IRVKILNKIKII

N

L2

V

Viewer L1

35

Overview

• Direct Illumination
ο Emission at light sources
ο Scattering at surfaces

• Global illumination
ο Shadows
ο Transmissions
ο Inter-object reflections

Global Illumination

36

Global Illumination

Greg Larson

7

37

Shadows

• Shadow term tells if light sources are blocked
ο Cast ray towards each light source Li
ο Si = 0 if ray is blocked, Si = 1 otherwise

∑ •+•++=
L LL

n
SDAAE ISRVKLNKIKII))()((

Shadow
Term

38

Ray Casting

• Trace primary rays from camera
ο Direct illumination from unblocked lights only

∑ •+•++=
L LL

n
SDAAE ISRVKLNKIKII))()((

39

TTRSL LL
n

SDAAE IKIKISRVKLNKIKII ++•+•++= ∑))()((

Recursive Ray Tracing

• Also trace secondary rays from hit surfaces
ο Global illumination from mirror reflection and
transparency

40

Mirror reflections

• Trace secondary ray in mirror direction
ο Evaluate radiance along secondary ray and
include it into illumination model

TTRSL LL
n

SDAAE IKIKISRVKLNKIKII ++•+•++= ∑))()((

Radiance
for mirror

reflection ray

IR

41

Transparency

• Trace secondary ray in direction of refraction
ο Evaluate radiance along secondary ray and
include it into illumination model

TTRSL LL
n

SDAAE IKIKISRVKLNKIKII ++•+•++= ∑))()((

Radiance for
refraction ray

IT

42

TTRSL LL
n

SDAAE IKIKISRVKLNKIKII ++•+•++= ∑))()((

Transparency

• Transparency coefficient is fraction transmitted
ο KT = 1 for translucent object, KT = 0 for opaque
ο 0 < KT < 1 for object that is semi-translucent

Transparency
Coefficient

KT

8

43

Refractive Transparency

• For thin surfaces, can ignore change in direction
ο Assume light travels straight through surface

N

L

Θi

T
Θr

ηr

ηi

Θi

T LT −≅

44

Refractive Tranparency

N

L

Θi

T
Θr

ηr

ηi

LNT
r

i
ri

r

i

η
η

η
η −Θ−Θ=)coscos(

• For solid objects, apply Snell’s law:

iirr Θ=Θ sinsin ηη

45

Recursive Ray Tracing

• Ray tree represents illumination computation

Ray traced through scene Ray tree

TTRSL LL
n

SDAAE IKIKISRVKLNKIKII ++•+•++= ∑))()((

46

Recursive Ray Tracing

• Ray tree represents illumination computation

Ray traced through scene Ray tree

TTRSL LL
n

SDAAE IKIKISRVKLNKIKII ++•+•++= ∑))()((

47

Recursive Ray Tracing

Image RayTrace(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(scene, ray, hit);

}
}
return image;

}

Image RayTrace(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(scene, ray, hit);

}
}
return image;

}

• GetColor calls RayTrace recursively

48

Summary

• Ray casting (direct Illumination)
ο Usually use simple analytic approximations for
light source emission and surface reflectance

• Recursive ray tracing (global illumination)
ο Incorporate shadows, mirror reflections,
and pure refractions

More on global illumination later!More on global illumination later!

All of this is an approximation
so that it is practical to compute
All of this is an approximation
so that it is practical to compute

9

49

Illumination Terminology

• Radiant power [flux] (Φ)
ο Rate at which light energy is transmitted (in Watts).

• Radiant Intensity (I)
ο Power radiated onto a unit solid angle in direction (in Watts/sr)

» e.g.: energy distribution of a light source (inverse square law)

• Radiance (L)
ο Radiant intensity per unit projected surface area (in Watts/m2sr)

» e.g.: light carried by a single ray (no inverse square law)

• Irradiance (E)
ο Incident flux density on a locally planar area (in Watts/m2)

» e.g.: light hitting a surface along a

• Radiosity (B)
ο Exitant flux density from a locally planar area (in Watts/ m2)

