
1

1

Ray Casting

Thomas Funkhouser
(covering for Finkelstein 9/27)

Princeton University

C0S 426, Fall 2001

2

3D Rendering

• The color of each pixel on the view plane
depends on the radiance emanating from
visible surfaces

View plane

Eye position

Simplest method
is ray casting

Simplest method
is ray casting

Rays
through
view plane

3

Ray Casting

• For each sample …
ο Construct ray from eye position through view plane
ο Find first surface intersected by ray through pixel
ο Compute color sample based on surface radiance

4

Ray Casting

• For each sample …
ο Construct ray from eye position through view plane
ο Find first surface intersected by ray through pixel
ο Compute color sample based on surface radiance

Samples on
view plane

Eye position

Rays
through
view plane

5

Ray Casting

• Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);

}
}
return image;

}

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);

}
}
return image;

}

6

Ray Casting

• Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);

}
}
return image;

}

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);

}
}
return image;

}

2

7

Constructing Ray Through a Pixel

right

back

Up direction

P0

towards

View
Plane

P

V

Ray: P = P0 + tVRay: P = P0 + tV

8

Constructing Ray Through a Pixel

• 2D Example

d
Θ towardsP0

right

right = towards x up

Θ = frustum half-angle
d = distance to view plane

P1 = P0 + d*towards - d*tan(Θ)*right
P2 = P0 + d*towards + d*tan(Θ)*right

P1

P2

2*d*tan(Θ
)

P

P = P1 + (i/width + 0.5) * 2*d*tan (Θ)*right
V = (P - P0) / ||P - P0 ||

V

Ray: P = P0 + tVRay: P = P0 + tV

9

Ray Casting

• Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);

}
}
return image;

}

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);

}
}
return image;

}

10

Ray-Scene Intersection

• Intersections with geometric primitives
ο Sphere
ο Triangle
ο Groups of primitives (scene)

• Acceleration techniques
ο Bounding volume hierarchies
ο Spatial partitions
» Uniform grids
» Octrees
» BSP trees

11

Ray-Sphere Intersection

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

P0

V

O

P

r

P’

12

Ray-Sphere Intersection I

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

Substituting for P, we get:
|P0 + tV - O|2 - r 2 = 0

Solve quadratic equation:
at2 + bt + c = 0

where:
a = 1
b = 2 V • (P0 - O)
c = |P0 - C|2 - r 2 = 0

P0

V

O

P

r

P’

Algebraic MethodAlgebraic Method

P = P0 + tV

3

13

Ray-Sphere Intersection II

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

L = O - P0

tca = L • V
if (tca < 0) return 0

d2 = L • L - tca2
if (d2 > r2) return 0

thc = sqrt(r2 - d2)
t = tca - thc and tca + thc

P0
V

O

P

r

P’

rdthc

tca

L

Geometric MethodGeometric Method

P = P0 + tV

14

Ray-Sphere Intersection

P0

V

O

P
r

N = (P - O) / ||P - O||

N

• Need normal vector at intersection
for lighting calculations

15

Ray-Scene Intersection

• Intersections with geometric primitives
ο Sphere
» Triangle
ο Groups of primitives (scene)

• Acceleration techniques
ο Bounding volume hierarchies
ο Spatial partitions
» Uniform grids
» Octrees
» BSP trees

16

Ray-Triangle Intersection

• First, intersect ray with plane

• Then, check if point is inside triangle

P

P0

V

17

Ray-Plane Intersection

Ray: P = P0 + tV
Plane: P • N + d = 0

Substituting for P, we get:
(P0 + tV) • N + d = 0

Solution:
t = -(P0 • N + d) / (V • N)

N

P

P0

V

Algebraic MethodAlgebraic Method

P = P0 + tV

18

Ray-Triangle Intersection I

• Check if point is inside triangle algebraically

P

P0

N1

T1

T2

T3

V2

V1

For each side of triangle
V1 = T1 - P
V2 = T2 - P
N1 = V2 x V1
Normalize N1
d1 = -P0 • N1
if ((P • N1 + d1) < 0)

return FALSE;
end

4

19

Ray-Triangle Intersection II

• Check if point is inside triangle parametrically

P

P0

Compute α, β:
P = α (T2-T1) + β (T3-T1)

Check if point inside triangle.
0 ≤ α ≤ 1 and 0 ≤ β ≤ 1
α + β ≤ 1

V
α

β
T1

T2

T3

20

Other Ray-Primitive Intersections

• Cone, cylinder, ellipsoid:
ο Similar to sphere

• Box
ο Intersect 3 front-facing planes, return closest

• Convex polygon
ο Same as triangle (check point-in-polygon algebraically)

• Concave polygon
ο Same plane intersection
ο More complex point-in-polygon test

21

Ray-Scene Intersection

• Find intersection with front-most primitive in group

A

B

C

D

E

F

Intersection FindIntersection(Ray ray, Scene scene)
{

min_t = infinity
min_primitive = NULL
For each primitive in scene {

t = Intersect(ray, primitive);
if (t < min_t) then

min_primitive = primitive
min_t = t

}
}
return Intersection(min_t, min_primitive)

}

22

Ray-Scene Intersection

• Intersections with geometric primitives
ο Sphere
ο Triangle
ο Groups of primitives (scene)

» Acceleration techniques
ο Bounding volume hierarchies
ο Spatial partitions
» Uniform grids
» Octrees
» BSP trees

23

Bounding Volumes

• Check for intersection with simple shape first
ο If ray doesn’t intersect bounding volume,
then it doesn’t intersect its contents

24

Bounding Volume Hierarchies I

• Build hierarchy of bounding volumes
ο Bounding volume of interior node contains all children

1

2 3

A

B

C

D

E

F

3

2

1

A B E FD

C

5

25

Bounding Volume Hierarchies

• Use hierarchy to accelerate ray intersections
ο Intersect node contents only if hit bounding volume

1

2 3C

A B E FD A

B

C

D

E

F

3

2

1
1

2

A B

C 3

26

Bounding Volume Hierarchies III

FindIntersection(Ray ray, Node node)
{

// Find intersections with child node bounding volumes
...
// Sort intersections front to back
...
// Process intersections (checking for early termination)
min_t = infinity;
for each intersected child i {

if (min_t < bv_t[i]) break;
shape_t = FindIntersection(ray, child);
if (shape_t < min_t) { min_t = shape_t;}

}
return min_t;

}

FindIntersection(Ray ray, Node node)
{

// Find intersections with child node bounding volumes
...
// Sort intersections front to back
...
// Process intersections (checking for early termination)
min_t = infinity;
for each intersected child i {

if (min_t < bv_t[i]) break;
shape_t = FindIntersection(ray, child);
if (shape_t < min_t) { min_t = shape_t;}

}
return min_t;

}

• Sort hits & detect early termination

27

Ray-Scene Intersection

• Intersections with geometric primitives
ο Sphere
ο Triangle
ο Groups of primitives (scene)

» Acceleration techniques
ο Bounding volume hierarchies
ο Spatial partitions
» Uniform grids
» Octrees
» BSP trees

28

Uniform Grid

• Construct uniform grid over scene
ο Index primitives according to overlaps with grid cells

A

B

C

D

E

F

29

Uniform Grid

• Trace rays through grid cells
ο Fast
ο Incremental

A

B

C

D

E

F
Only check primitives
in intersected grid cells
Only check primitives
in intersected grid cells

30

Uniform Grid

• Potential problem:
ο How choose suitable grid resolution?

A

B

C

D

E

F
Too little benefit
if grid is too coarse
Too little benefit
if grid is too coarse

Too much cost
if grid is too fine
Too much cost
if grid is too fine

6

31

Ray-Scene Intersection

• Intersections with geometric primitives
ο Sphere
ο Triangle
ο Groups of primitives (scene)

» Acceleration techniques
ο Bounding volume hierarchies
ο Spatial partitions
» Uniform grids
» Octrees
» BSP trees

32

Octree

• Construct adaptive grid over scene
ο Recursively subdivide box-shaped cells into 8 octants
ο Index primitives by overlaps with cells

A

B

C

D

E

F
Generally fewer cellsGenerally fewer cells

33

Octree

• Trace rays through neighbor cells
ο Fewer cells
ο More complex neighbor finding

A

B

C

D

E

F
Trade-off fewer cells for
more expensive traversal
Trade-off fewer cells for
more expensive traversal

34

Ray-Scene Intersection

• Intersections with geometric primitives
ο Sphere
ο Triangle
ο Groups of primitives (scene)

» Acceleration techniques
ο Bounding volume hierarchies
ο Spatial partitions
» Uniform grids
» Octrees
» BSP trees

35

Binary Space Partition (BSP) Tree

• Recursively partition space by planes
ο Every cell is a convex polyhedron

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

36

Binary Space Partition (BSP) Tree

• Simple recursive algorithms
ο Example: point finding

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

P1

3

7

37

Binary Space Partition (BSP) Tree

• Trace rays by recursion on tree
ο BSP construction enables simple front-to-back traversal

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

P1

2

4

3

38

Binary Space Partition (BSP) Tree

RayTreeIntersect(Ray ray, Node node, double min, double max)
{

if (Node is a leaf)
return intersection of closest primitive in cell, or NULL if none

else
dist = distance of the ray point to split plane of node
near_child = child of node that contains the origin of Ray
far_child = other child of node
if the interval to look is on near side

return RayTreeIntersect(ray, near_child, min, max)
else if the interval to look is on far side

return RayTreeIntersect(ray, far_child, min, max)
else if the interval to look is on both side

if (RayTreeIntersect(ray, near_child, min, dist)) return …;
else return RayTreeIntersect(ray, far_child, dist, max)

}

RayTreeIntersect(Ray ray, Node node, double min, double max)
{

if (Node is a leaf)
return intersection of closest primitive in cell, or NULL if none

else
dist = distance of the ray point to split plane of node
near_child = child of node that contains the origin of Ray
far_child = other child of node
if the interval to look is on near side

return RayTreeIntersect(ray, near_child, min, max)
else if the interval to look is on far side

return RayTreeIntersect(ray, far_child, min, max)
else if the interval to look is on both side

if (RayTreeIntersect(ray, near_child, min, dist)) return …;
else return RayTreeIntersect(ray, far_child, dist, max)

}

39

Other Accelerations

• Screen space coherence
ο Check last hit first
ο Beam tracing
ο Pencil tracing
ο Cone tracing

• Memory coherence
ο Large scenes

• Parallelism
ο Ray casting is “embarassingly parallelizable”

• etc.

40

Acceleration

• Intersection acceleration techniques are important
ο Bounding volume hierarchies
ο Spatial partitions

• General concepts
ο Sort objects spatially
ο Make trivial rejections quick
ο Utilize coherence when possible

Expected time is sub-linear in number of primitivesExpected time is sub-linear in number of primitives

41

Summary

• Writing a simple ray casting renderer is easy
ο Generate rays
ο Intersection tests
ο Lighting calculations

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);

}
}
return image;

}

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);

}
}
return image;

}

42

Next Time is Illumination!

Without Illumination With Illumination

