Image Processing

Thomas Funkhouser
(covering for Finkelstein 9/18)
Princeton University
COS 426, Fall 2001

1

Overview
• Image representation
 ◦ What is an image?
• Halftoning and dithering
 ◦ Trade spatial resolution for intensity resolution
 ◦ Reduce visual artifacts due to quantization
• Sampling and reconstruction
 ◦ Key steps in image processing
 ◦ Avoid visual artifacts due to aliasing

2

What is an Image?
• An image is a 2D rectilinear array of pixels

3

What is an Image?
• An image is a 2D rectilinear array of pixels

4

Image Acquisition
• Pixels are samples from continuous function
 ◦ Photoreceptors in eye
 ◦ CCD cells in digital camera
 ◦ Rays in virtual camera

5

A pixel is a sample, not a little square!

6
Image Display
- Re-create continuous function from samples
 - Example: cathode ray tube

Image is reconstructed by displaying pixels with finite area (Gaussian)

Image Resolution
- Intensity resolution
 - Each pixel has only "Depth" bits for colors/intensities
- Spatial resolution
 - Image has only "Width" x "Height" pixels
- Temporal resolution
 - Monitor refreshes images at only "Rate" Hz

<table>
<thead>
<tr>
<th>Typical Resolutions</th>
<th>Width x Height</th>
<th>Depth</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTSC</td>
<td>640 x 480</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>Workstation</td>
<td>1280 x 1024</td>
<td>24</td>
<td>75</td>
</tr>
<tr>
<td>Film</td>
<td>3000 x 2000</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Laser Printer</td>
<td>6600 x 5100</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Sources of Error
- Intensity quantization
 - Not enough intensity resolution
- Spatial aliasing
 - Not enough spatial resolution
- Temporal aliasing
 - Not enough temporal resolution

\[E^2 = \sum_{(x,y)} (I(x, y) - P(x, y))^2 \]

Overview
- Image representation
 - What is an image?
 - Halftoning and dithering
 - Reduce visual artifacts due to quantization
 - Sampling and reconstruction
 - Reduce visual artifacts due to aliasing

Quantization
- Artifacts due to limited intensity resolution
 - Frame buffers have limited number of bits per pixel
 - Physical devices have limited dynamic range

Uniform Quantization
\[P(x, y) = \text{trunc}(I(x, y) + 0.5) \]
Uniform Quantization

- Images with decreasing bits per pixel:

 8 bits 4 bits 2 bits 1 bit

Notice contouring

Reducing Effects of Quantization

- Halftoning
 - Classical halftoning

- Dithering
 - Random dither
 - Ordered dither
 - Error diffusion dither

Classical Halftoning

- Use dots of varying size to represent intensities
 - Area of dots proportional to intensity in image

Classical Halftoning

Newspaper Image

From New York Times, 9/21/99

Halftone patterns

- Use cluster of pixels to represent intensity
 - Trade spatial resolution for intensity resolution

Dithering

- Distribute errors among pixels
 - Exploit spatial integration in our eye
 - Display greater range of perceptible intensities

Figure 14.37 from H&B
Random Dither
- Randomize quantization errors
 - Errors appear as noise

\[P(x, y) = \text{trunc}(I(x, y) + \text{noise}(x,y) + 0.5) \]

Ordered Dither
- Pseudo-random quantization errors
 - Matrix stores pattern of thresholds

\[i = x \mod n \]
\[j = y \mod n \]
\[e = I(x,y) - \text{trunc}(I(x,y)) \]
\[\text{if} (e > D(i,j)) \]
\[P(x,y) = \text{ceil}(I(x,y)) \]
\[\text{else} \]
\[P(x,y) = \text{floor}(I(x,y)) \]

Ordered Dither
- Bayer's ordered dither matrices

\[D_x = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \]
\[D_y = \begin{bmatrix} 4D_x & 4D_z \\ 4D_y & 4D_z \end{bmatrix} \]

\[D_z = \begin{bmatrix} 15 & 7 & 13 & 5 \\ 3 & 11 & 1 & 9 \\ 12 & 4 & 14 & 6 \\ 0 & 8 & 2 & 10 \end{bmatrix} \]

Error Diffusion Dither
- Spread quantization error over neighbor pixels
 - Error dispersed to pixels right and below

\[\alpha + \beta + \gamma + \delta = 1.0 \]

Figure 14.42 from H&B
Error Diffusion Dither

- Original (8 bits)
- Random Dither (1 bit)
- Ordered Dither (1 bit)
- Floyd-Steinberg Dither (1 bit)

Overview

- Image representation
 - What is an image?
- Halftoning and dithering
 - Reduce visual artifacts due to quantization
 - Reduce visual artifacts due to aliasing

Sampling and Reconstruction

![Sampling Diagram]

- Sampling
- Reconstruction

Aliasing

- In general:
 - Artifacts due to under-sampling or poor reconstruction
- Specifically, in graphics:
 - Spatial aliasing
 - Temporal aliasing

Spatial Aliasing

- Artifacts due to limited spatial resolution
Spatial Aliasing
- Artifacts due to limited spatial resolution

```
Jaggies
```

Temporal Aliasing
- Artifacts due to limited temporal resolution
 - Strobing
 - Flickering

Temporal Aliasing
- Artifacts due to limited temporal resolution
 - Strobing
 - Flickering

Temporal Aliasing
- Artifacts due to limited temporal resolution
 - Strobing
 - Flickering

Temporal Aliasing
- Artifacts due to limited temporal resolution
 - Strobing
 - Flickering

Antialiasing
- Sample at higher rate
 - Not always possible
 - Doesn’t always solve problem

- Pre-filter to form bandlimited signal
 - Form bandlimited function (low-pass filter)
 - Trades aliasing for blurring

Must consider sampling theory!
Sampling Theory
- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?

Spectral Analysis
- Spatial domain:
 - Function: \(f(x) \)
 - Filtering: convolution
- Frequency domain:
 - Function: \(F(u) \)
 - Filtering: multiplication

Any signal can be written as a sum of periodic functions.

Fourier Transform
- Fourier transform:
 \[
 F(u) = \int_{-\infty}^{\infty} f(x) e^{-j2\pi ux} dx
 \]
- Inverse Fourier transform:
 \[
 f(x) = \int_{-\infty}^{\infty} F(u) e^{j2\pi ux} du
 \]

Sampling Theorem
- A signal can be reconstructed from its samples, if the original signal has no frequencies above 1/2 the sampling frequency - Shannon
- The minimum sampling rate for bandlimited function is called “Nyquist rate”

Convolution
- Convolution of two functions (= filtering):
 \[
 g(x) = f(x) \ast h(x) = \int_{-\infty}^{\infty} f(\lambda) h(x-\lambda) d\lambda
 \]
- Convolution theorem
 - Convolution in frequency domain is same as multiplication in spatial domain, and vice-versa

A signal is bandlimited if its highest frequency is bounded. The frequency is called the bandwidth.
Image Processing

- Quantization
 - Uniform Quantization
 - Random dither
 - Ordered dither
 - Floyd-Steinberg dither
- Pixel operations
 - Add random noise
 - Add luminance
 - Add contrast
 - Add saturation
- Filtering
 - Blur
 - Detect edges
- Warping
 - Scale
 - Rotate
 - Warps
- Combining
 - Morphs
 - Composite

- Consider reducing the image resolution

Antialiasing in Image Processing

- General Strategy
 - Pre-filter transformed image via convolution with low-pass filter to form bandlimited signal
- Rationale
 - Prefer blurring over aliasing

Image Processing

- Image processing is a resampling problem

Antialiasing in Image Processing

- General Strategy
 - Pre-filter transformed image via convolution with low-pass filter to form bandlimited signal
- Rationale
 - Prefer blurring over aliasing

Image Processing

- Consider reducing the image resolution

Antialiasing in Image Processing

- General Strategy
 - Pre-filter transformed image via convolution with low-pass filter to form bandlimited signal
- Rationale
 - Prefer blurring over aliasing

Image Processing

- Image processing is a resampling problem

Antialiasing in Image Processing

- General Strategy
 - Pre-filter transformed image via convolution with low-pass filter to form bandlimited signal
- Rationale
 - Prefer blurring over aliasing

Image Processing

- Consider reducing the image resolution

Antialiasing in Image Processing

- General Strategy
 - Pre-filter transformed image via convolution with low-pass filter to form bandlimited signal
- Rationale
 - Prefer blurring over aliasing
Ideal Low-Pass Filter

- Frequency domain
 - ![Frequency Domain Plot](image1.png)

- Spatial domain
 - ![Spatial Domain Plot](image2.png)

Figure 4.5 Wolberg

Practical Image Processing

- Finite low-pass filters
 - Point sampling (bad)
 - Triangle filter
 - Gaussian filter

Real world → Sample → Discrete samples (pixels) → Reconstruct → Reconstructed function → Transform → Transformed function → Filter → Bandlimited function → Sample → Discrete samples (pixels) → Reconstruct → Display

Figure 2.4 Wolberg

Triangle Filter

- Convolution with triangle filter

Input → Output

Figure 2.4 Wolberg

Gaussian Filter

- Convolution with Gaussian filter

Input → Output

Figure 2.4 Wolberg

Image Processing

- Quantization
 - Uniform Quantization
 - Random dither
 - Ordered dither
 - Floyd-Steinberg dither

- Pixel operations
 - Add random noise
 - Add luminance
 - Add contrast
 - Add saturation

- Filtering
 - Blur
 - Detect edges

- Warping
 - Scale
 - Rotate
 - Warps

- Combining
 - Morphs
 - Composite

Figure 2.4 Wolberg

Adjusting Brightness

- Simply scale pixel components
 - Must clamp to range (e.g., 0 to 255)

Original → Brighter

Figure 2.4 Wolberg
Adjusting Contrast

- Compute mean luminance \(\bar{l} \) for all pixels
 - \(\text{luminance} = 0.30 \times r + 0.59 \times g + 0.11 \times b \)
- Scale deviation from \(\bar{l} \) for each pixel component
 - Must clamp to range (e.g., 0 to 255)

![Original](Image) ![More Contrast](Image)

Image Processing

- Quantization
 - Uniform Quantization
 - Random dither
 - Ordered dither
 - Floyd-Steinberg dither
- Warping
 - Scale
 - Rotate
 - Warps
- Pixel operations
 - Add random noise
 - Add luminance
 - Add contrast
 - Add saturation
- Combining
 - Morphs
 - Composite

Adjust Blurriness

- Convolve with a filter whose entries sum to one
 - Each pixel becomes a weighted average of its neighbors

![Original](Image) ![Blur](Image)

Filter: \[
\begin{bmatrix}
\frac{1}{16} & \frac{1}{16} & \frac{1}{16} \\
\frac{1}{16} & \frac{1}{16} & \frac{1}{16} \\
\frac{1}{16} & \frac{1}{16} & \frac{1}{16}
\end{bmatrix}
\]

Edge Detection

- Convolve with a filter that finds differences between neighbor pixels

![Original](Image) ![Detect edges](Image)

Filter: \[
\begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{bmatrix}
\]

Image Processing

- Filtering
 - Blur
 - Detect edges
- Warping
 - Scale
 - Rotate
 - Warps
- Pixel operations
 - Add random noise
 - Add luminance
 - Add contrast
 - Add saturation
- Combining
 - Morphs
 - Composite

Scaling

- Resample with triangle or Gaussian filter

![Original](Image) ![1/4X resolution](Image) ![4X resolution](Image)

More on this next lecture!
Image Processing

- Image processing is a resampling problem
 - Avoid aliasing
 - Use filtering

Summary

- Image representation
 - A pixel is a sample, not a little square
 - Images have limited resolution

- Halftoning and dithering
 - Reduce visual artifacts due to quantization
 - Distribute errors among pixels
 - Exploit spatial integration in our eye

- Sampling and reconstruction
 - Reduce visual artifacts due to aliasing
 - Filter to avoid undersampling
 - Blurring is better than aliasing