Overview

- Display hardware
 - How are images displayed?
- Raster graphics systems
 - How are imaging systems organized?
- Color models
 - How can we describe and represent colors?

Display Hardware

- Video display devices
 - Cathode Ray Tube (CRT)
 - Liquid Crystal Display (LCD)
 - Plasma panels
 - Thin-film electroluminescent displays
 - Light-emitting diodes (LED)
- Hard-copy devices
 - Ink-jet printer
 - Laser printer
 - Film recorder
 - Electrostatic printer
 - Pen plotter

Raster Graphics

Adam Finkelstein
Princeton University
COS 426, Fall 2001
Display Hardware

- Video display devices
 - Cathode Ray Tube (CRT)
 - Liquid Crystal Display (LCD)
 - Plasma panels
 - Thin-film electroluminescent displays
 - Light-emitting diodes (LED)

- Hard-copy devices
 - Ink-jet printer
 - Laser printer
 - Film recorder
 - Electrostatic printer
 - Pen plotter

Overview

- Display hardware
 - How are images displayed?
- Raster graphics systems
 - How are imaging systems organized?
- Color models
 - How can we describe and represent colors?
Color CRT

Overview

- Display hardware
 - How are images displayed?
- Raster graphics systems
 - How are imaging systems organized?
- Color models
 - How can we describe and represent colors?

Electromagnetic Spectrum

- Visible light frequencies range between ...
 - Red = 4.3×10^{14} hertz (700nm)
 - Violet = 7.5×10^{14} hertz (400nm)

Visible Light

- The color of light is characterized by ...
 - Hue = dominant frequency (highest peak)
 - Saturation = excitation purity (ratio of highest to rest)
 - Lightness = luminance (area under curve)

Color Perception

- Color models
 - RGB
 - XYZ
 - CMY
 - HSV
 - Others
RGB Color Model

<table>
<thead>
<tr>
<th>R</th>
<th>G</th>
<th>B</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>Black</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>Red</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>Green</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>Blue</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>Yellow</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>Magenta</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>Cyan</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>White</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>?</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
<td>?</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5</td>
<td>0.0</td>
<td>?</td>
</tr>
<tr>
<td>0.5</td>
<td>0.3</td>
<td>0.1</td>
<td>?</td>
</tr>
</tbody>
</table>

Colors are additive.

Plate II.3 from FvDFH

RGB Color Cube

Figures 15.11 & 15.12 from H&B

RGB Spectral Colors

Amounts of RGB primaries needed to display spectral colors

Figure 15.5 from H&B

XYZ Color Model (CIE)

Amounts of CIE primaries needed to display spectral colors

Figure 15.6 from H&B

CIE Chromaticity Diagram

Normalized amounts of X and Y for colors in visible spectrum

Figure 15.7 from H&B

CIE Chromaticity Diagram

Compare Color Gamuts Identify Complementary Colors Determine Dominant Wavelength and Purity

Figures 15.8-10 from H&B
Summary

- **Display hardware**
 - Monitors: CRTs, LCDs, etc.
 - Hard-copy: printers, plotters, etc.

- **Raster graphics systems**
 - Display processors
 - Frame buffers
 - Video controllers
 - Devices cannot display all visible colors

- **Color models**
 - Tristimulus theory of color
 - Different color models for different devices, uses, etc.