- Backpropagation
~ Introduction to

- C0S8302

" Fall 2001

Artificial Intelligence

Michael L. Littman

| Classification Percept.

| A Boolean Function

A aAa0a20200a)

BCDEF G out
010101 (1]
110001 /]
o10010 o
oo0o0100 1
o11000 1
1170101 o
101001 1
111101 1
1711111 1
1170011]

" Administration

. (Questions, concerns?
\

Perceptrons

I Recall that the squashing function
l.' makes the output look more like
bits: 0 or 1 decisions.

1" what if we give it inputs that are
| also bits?
[

>

»

| " Can perceptron learn this?

»
A

=

' Ands and Ors

out(x) = g(sum, w, x,)
| How can we set the weights to
represent (v)(v,)(~v;) ? AND
| w;=0, except
w,=10, w,=10, w,=-10, w,=-15 (5-max)
] How about ~v; +v, +~vg? OR
w;=0, except
| w,=-10, w,=10, w,=-10, w,=15 (-5-min)

Sweet Sixteen?

ab (~a)*(~b)

| a(~b) (~a)+b
(~a)b a+(~b)
| (~a)(~b) at+b

a ~a
| b ~b
1 0
| a=b a exclusive-or b (a # b)

Linearly Separable

Are at least half the bits on?

Set all weights to 1, w, to -n/2.
ABCDEF G out

W_2=_20-2a00a
-_-aaa00=a0
aaaoaoaaa
O aaa0c00000
S A OS2 00a
= 0000=_00
[O G O I G
A A O0O=2000 -

tation size using decision tree?

XOR Constraints

A B out

000 a(wp) < 1/2

01 1 g(wgtwy) > 1/2

10 1 g(watwp) > 1/2

11 0 g(watwgtw,) < 1/2

W, < 0, w,tw>0, wg+w >0,
Wuotwg+2 w>0, 0 < w,+wptw,< 0

IN

Requiem for a
Perceptron

Rosenblatt proved that a
. perceptron will learn any
linearly separable function.
Minsky and Papert (1969) in
. Perceptrons: “there is no reason
to suppose that any of the
. virtues carry over to the many-
layered version.”

| Backpropagation

Bryson and Ho (1969, same year)
described a training procedure
for multilayer networks. Went
unnoticed.

~ Multiply rediscovered in the
1980s.

Multilayer Net

Multiple Outputs

Makes no difference for the

perceptron.

- Add more outputs off the hidden
layer in the multilayer case.

4

Output Function

out;(x) = g(sum, U; g(sum, W,; x,))
H: number of “hidden” nodes

. Also:
e Use more than one hidden layer
e Use direct input-output weights

How Train?

Find a set of weights U, W
that minimize

sum, , sum, (y-out;(x))?
using gradient descent.
" Incremental version (vs. batch):

Move weights a small amount for
each training example

[eV)

]

Updating Weights

1. Feed-forward to hidden:
net; = sum, Wy, x,; hid; = g(net;)
2. Feed-forward to output:
net; = sum, U;; hid;; out; = g(net;)
3. Update output weights:
4;= g’(net) (yr-out); U;; += n hid; 4
4. Update hidden weights:
A= g’(net)) sum,; Uy Ay Wy += 1 x4

y

Does it Work?

Sort of: Lots of practical
applications, lots of people play
with it. Fun.

However, can fall prey to the
standard problems with local
search...

NP-hard to train a 3-node net.

™~

Representation Issues

Any continuous function can be
represented by a one hidden layer
net with sufficient hidden nodes.

Any function at all can be represented
by a two hidden layer net with a
sufficient number of hidden nodes.

What’s the downside for learning?

Multilayer Net (schema)

Xy

Wy

net,

hid,; Aj

U;; U;
net; Ai
out; . Y;

Step Size Issues

% Too small? Too big?

Generalization Issues

Pruning weights:
“optimal brain damage”

_ Cross validation

Much, much more to this. Take a
class on machine learning.

(F>N

]

What to Learn

Representing logical functions
using sigmoid units

Majority (net vs. decision tree)

XOR is not linearly separable

Adding layers adds expressibility

Backprop is gradient descent

Homework 10 (due 12/12)

1. Describe a procedure for
converting a Boolean formula
in CNF (n variables, m clauses)
into an equivalent network?
How many hidden units does it
have?

2. More soon

ol

