Game Trees

Introduction to
Artificial Intelligence

C0S302
Michael L. Littman
Fall 2001

Administration

Questions?
Anything on Rush hour?

HW reminder: Opportunity for
feedback. Not seeking
perfection!

Search in Games

Consider tic-tac-toe as a search
problem.
States, neighbors, goal?

0]0 0
X| X

O

Problem

Path to goal isn’t quite right.
X X 0]

>
o
>
o

>
>
(@)
X X | X
(@)

Game Model

X: states for player 1 (max) to go

Y: states for player 2 (min) to go

N(s): Set of states neighboring s

G(s): 0, game continues; 1, game
ends

V(s): score for ending in state s

(Assume alternation: simpler.)

Nim: Example Game

n piles of sticks, c; sticks in pile i

X: sizes of piles on player 1’s turn

Y: sizes of piles on player 2’s turn

N(s): all reductions of a pile by
one or more, swapping turns

G(s): all sticks gone

V(s): +1 if s in X, else -1 (lose if
take last stick)

Specific game, starts with two
piles, two sticks each.

(||,||)-X, (l!”)‘x! (,||)-X, (”!l)‘x! (l!l)‘x!
(!l)‘x! (l!)'x! (”!)'x! (,)-X

("!")‘Y! (l!”)‘Y! (!")‘Y! (”!l)‘Y! (l!l)‘Y!
(!l)‘Y! (l!)'Y! (”!)'Y! (!)‘Y

Simplification to reduce states?

Game Tree for II-Nim

(L1)-x
/\
(L,)-Y (l)-Y
_— N T
(||,)-X (l!l)‘x (l!)‘x (l!)‘x (!)'x
STTT— T T ~

(l!)\'Y (!)‘Y (l!)'Y (!)'Y (!)‘Y
(!)'x (,)-X
+1 -1 +1 -1 -1+l

Minimax Values

ais11)-x
/\
aLn-y)y
N
aL)-X (L)-X ()-X (,)-X (;)-X
e T T~ N
(I,)‘-Y G)»Y (Is)l-Y G)-Y ()Y

(,)-X (,)-X
+1 -1 +1 -1 -1 +1

DFS Version

Minimax-val(s) = {
If (G(s)) return V(s)
Else if sin X
return max,; ;, ys minimax-val(s’)
Else
return min,, ;,) Minimax-val(s’)

}

Questions

* Does BFS minimax make sense?
¢ If there are loops in the game
- Will minimax-val always succeed?
- Will minimax-val always fail?
- Is minimax even well defined?
- Can we fix things?

Dynamic Programming

Depth I, branching factor b,
minimax-val takes O(b') always.

Might be far fewer states: chess
b'= 10120, only 1040 states

What do you do if far fewer states
than tree nodes?

Record Visited States

(1s11)-X
/\
aL)-y ()Y

(1,)-x (1,)-X
(!)‘Y

(1:)-X
(1,)-Y

(:)-X

O

Sharks

Each turn move forward, rotate.
Lose if trapped or “face off’ed.

) 4

Label States w/ Winner

Win for red Win for green

4 >

< <

O

Loopy Algorithm

Init: Label all states as “?”. L(s) = “?”
For all x in X:

¢ If some y in N(x), L(y) = +1, L(x) = +1
o If all y in N(x), L(y) = -1, L(x) = -1
ForallyinY:

* If some x in N(y), L(x) = -1, L(y) = -1
e If all x in N(y), L(x) = +1, L(y) = +1
Repeat until no change.

Loopy Analysis

If L(s) = +1, forced win for X
If L(s) = -1, forced win for Y

What if L(s) = “?” at '
the end?

Neither player can

force a win:

stalemate. &

Pruning the Search

(LI-X
/\

(DY (L)Y
— N T
()-X " (b)=X (1s)-X (Is)-X ()-X

[Te— T T ~

(Is)l-Y ()-Y (|s)‘-Y ()Y ()Y

()-X ()-X

O

Unknown Terminal Vals

This example made heavy use of
the fact that -1 and +1 were the
only legal values of terminal
states.

What sort of pruning can we do
without this knowledge?

Use Ancestors to Prune

()-X
/\
+2 ()Y ()Y
T

(O-x ()X
—
0Oy ()Y
P NAN
+1 ()X ()X +—Can this
A value matter?

O

Alpha-beta

Max-val(s,alpha,beta)

s: current state (max player to go)

alpha: best score (highest) for
max along path to s

beta: best score (lowest) for min
along path to s

Output: min(beta, best score for
max available from s)

Max-val

Max-val(s, alpha, beta) =
¢ If (s in G(s)), return V(s).
¢ Else for each s’ in N(s)

— alpha = max(alpha, Min-val(s’,
alpha,beta))
- If alpha >= beta, return beta

¢ Return alpha

o

Min-val

Min-val(s, alpha, beta) =
* If (s in G(s)), return V(s).
* Else for each s’ in N(s)
- beta = min(beta, Max-val(s’,
alpha,beta))
- If alpha >= beta, return alpha

¢ Return beta

Scaling Up

Best case, alpha-beta cuts
branching factor in half.

Doesn’t scale to full games like
chess without some
approximation.

O

Heuristic Evaluation

Familiar idea: Compute h(s), a
value meant to correlate with
the game-theoretic value of the
game.

After searching as deeply as
possible, plug in h(s) instead of
searching to leaves.

Building an Evaluator

Compute numeric features of the
state: f1,...,fn.

Take a weighted sum according
to a set of predefined weights
w1,...,wn.

Features chosen by hand.
Weights, too, although they can
be tuned automatically.

Some Issues

Use h(s) only if s “quiescent”.
Horizon problem: Delay a bad
outcome past search depth.

Chess and checkers, pieces leave
the board permanently. How
can we exploit this?

Openings can be handled also.

Some Games

Chess: Deep Blue beat Kasparov
Checkers: Chinook beat Tinsley
(opening book, end game DB)

Othello, Scrabble: near perfect

Go: Branching factor thwarts
computers

What to Learn

Game definition (X, Y, N, G, V).

Minimax value and the DFS
algorithm for computing it.

Advantages of dynamic
programming.

How alpha-beta works.

()

Homework 4 (due 10/17)

1. In graph partitioning, call a balanced
state one in which both sets contain the
same number of nodes. (a) How can we
choose an initial state at random that is
balanced? (b) How can we define the
neighbor set N so that every neighbor of a
balanced state is balanced? (c) Show that
standard GA crossover (uniform) between
two balanced states need not be
balanced. (d) Suggest an alternative
crossover operator that preserves
balance.

O

HW (continued)

2. Label the nodes of the game tree on
the next page with the values
assigned by alpha-beta. Assume
children are visited left to right.

Problem 2

()-X
/ \
()Y ()Y
T ST~
()-X ()-X ()-X ()X
S S— \
()\-Y ()-Y ()Y ()‘-Y ()Y
()-X ()-X
-0.8 +054 +09 +1.22 +0.81 -10

