)
Satisfiability

- Introduction to
Artificial Intelligence

> COS302
Michael L. Littman

“ v
S
:I m -
st
rati
ion

u
s
s

)
Types of Logics

&
Logic historically a hot topic in Al.

0. Propositional logic: Boolean
. Vvariables (simple)

 First-order logic: more advanced
> types, objects (expressive)

Book covers first-order logic.
'l Focus here on propositional.

)
Propositional Syntax

B

Formula:
) e Constants: T, F
" Variables: x,,...,X,..
e Negation: ~f (f formula)
1" « Literal: variable or its negation
N e Grouping: (f) (f formula)
e Binary expressions next
]

| .]
Binary Expressions

B

Given formulae f and g:
) e Conjunction (“and”): fg
1) * Disjunction (“or”): f+g
e Implication: f- g
1" « Equivalence: f- g

Truth Tables

1) _
Some Equivalences

B

|W| Write xy in terms of + and ~:
() Write x -y in terms of the others
o Xy+(~x)(~y)
'}” Write x_y in terms of the others
o ~x+
) y

* ~(x(~y))
[

1 c
B

Propositional logic syntax is
[l pretty simple, but can be even
1 simpler.

Conjunctive normal form (CNF) is
| : a conjunction of disjunction of

literals (clauses).
[) (~x+WHV) (x+z+~y)(~WE~y+~V)(viuty)(x+~v+u)

&
1. Put negation of formula in DNF

| : For each “F” row in table, make a
term equivalent to the
| |”| corresponding assignment

) 2. Negate the negation

By DeMorgan’s Law, ands and ors
| : swap and literals negate
)

Truth Table to CNF

)
CNF Example
R

Express x-yin CNF

[l 1. Two cases for “F”: x=T, y=F
1 and x=F, y=T

2. Negation in DNF: x(~y)+(~x)y
‘1> 3. Negate it: (~x+y)(x+~y)

It works!

)
Assignments & Models

&

Assignment: Mapping of n
) variables to truth values

) u=F, v=T, w=F, x=T, y=F, z=T

Satisfying assignment (model):
|) Makes the formula evaluate to T
(~x+wHv)(x+z+~y)(~W+~y+~v)(v+uty)(x+~v+u)

'J> 64 assignments, 31 models.

)
Categories of Formulae

B

| Wl A Boolean formula can be:

 Valid (tautology): all
1 assignments satisfying.

 Satisfiable: at least one
\)» assignment true.

e Unsatisfiable: none true.

)
Computational Problems

&

Given a formula, determine if it is
[l valid: reasoning, proof
0 generation.

Given a formula, determine if it is
1 satisfiable (SAT): search.

~valid(f) = satisfiable(~f)
> Both hard!

1
SAT as CSP
B

SAT is determining satisfiability
) of formula in CNF. Can be
) solved as a CSP!

(xty)(~x+~y)

') Variables are variables
Domainis T, F

[l Clauses are constraints

)
. Generic CSP Algorithm
A

e If all values assigned and no
) constraints violated, done

1 * Apply consistency checking
e If deadend, backtrack
11> « Select variable to be assigned
e Select value for the variable
* Assign variable and recurse

)
. Generic SAT Algorithm
A

e If all values assigned and no
) constraints violated, done

1 * Apply consistency checking
e If deadend, backtrack
11> « Select variable to be assigned
e Select value for the variable
* Assign variable and recurse

)
. Generic SAT Algorithm
A

e If all values assigned and no
) clauses violated, done

1 * Apply consistency checking
e If deadend, backtrack
11> « Select variable to be assigned
e Select value for the variable
* Assign variable and recurse

)
. Generic SAT Algorithm
A

e If all values assigned and no
) clauses violated, done

1 * Apply unit propagation
e If deadend, backtrack
11> « Select variable to be assigned
e Select value for the variable
* Assign variable and recurse

)
. Generic SAT Algorithm
A

e If all values assigned and no
) clauses violated, done

1 * Apply unit propagation
e If unsatisfied clause, backtrack
11> « Select variable to be assigned
e Select value for the variable
* Assign variable and recurse

1)
Pure Variables

&
N (x+y+z)(x+~y+~w)(w+~z+y)
If x is a pure literal (never

1 appears negated), then if there
is a satisfying assignment with

1 x=F, there must also be one with
x=T.

1> So, we need only check one case

|H (no branching).
[}

1)
Purification at Work

B

(~X+WHV) (X+ZH~Y) (~WH~Y+~V) (VHuty) (X +~V+u)
1) z=T
(~x+w+v)(~w+~y+~v)(v+u+ty)(x+~v+u)
[u=T
(~x+w+v)(~w+~y+~V)
1 x=F
(~w~y+~v)
=F
[=
Formula satisfied

)
&

Davis-Putnam-Logemann-Loveland
[l (1962) basis of practical SAT
1) algorithms

e Recursive: stop if SAT or UNSAT

" Unit propagation, recurse
 Purification, recurse

1" « Else, split and recurse on both

)
. Splitting Heuristics

Wl How choose a variable to split?
0. Most occurrences
1) * In short clauses

e Lots more of one kind of literal
"> than another

0 www.ee.princeton.edu/~chaff

1
o DPLL Analysis

g, variables. Worst case?
|

Split on a variable in a shortest
1) clause.

What if only k literals per clause
> (k-CNF)? Say, k=27

F
N
.C

£ 2

O

IS

lys

na

A

ial
i1Ia
om
lyn
in po
in
n
ru
to
de
a
m
be
n
» ca_ me.
¥ ti
I |

)
" Analysis of 3-CNF

(x+y+z)(~x+u+v)...
) X=T: (u+v)...
) u=T: ... (2 vars eliminated)
u=F, v=T: ... (3 vars eliminated)
1" x=F: (y+2)... (same idea)
N R(n) < 2 R(n-2) + 2 R(n-3)
=~ 1.769"
)

1
o

Analysis Improvements

|““ |W| SAT (3-CNF)
)
Pt
§ 1;4 oo
o]
|‘“ |||’| E 1 f

1960 1980 2000 2020 2040

Publication Year

1
o

Analysis Improvements

SAT (3-CNF
1 (3-CNF)
% 2 T~
B s =
W g
11

1960 1980 2000 2020 2040

Publication Year

)
. PHP: Propositional Proof
A

: Pigeonhole Principle:
|

e If you have n+1 pigeons and n
g holes and each pigeon is

assigned a hole, then some hole
- contains at least 2 pigeons.

DPLL takes exponential time to
> prove validity.

1
3-CNF Conversion Ex.

B
~(~(~x+y) 2)

) Efficient procedure for creating
p 2" equivalent 3-CNF expression

from an arbitrary propositional
1 expression.

1)
3-CNF Conversion

B

1. Add a variable for each binary
[l operator in the expression.

1 2. Create a set of 3-CNF clauses
for each of the derived
|) variables.

3. Add a clause for the root node.

1)
What to Learn
o

| Wl Definition of SAT.

How to make a CNF expression
. from a truth table.

The DPLL algorithm.

1> How to make a 3-CNF expression
from an arbitrary expression.
)

1. Let f=~(x+ ~y(~x+2z)). (a) Write out the
|“ |”| truth table for f. (b) Convert the truth
table to CNF. (c) Show the series of steps
DPLL makes while solving the resuiting
|‘“ WI formula. Assume variables chosen for
splitting in the order x, y, z.

| 1> 2. Using the same f from the first part,
follow the 3-CNF conversion algorithm to
create an equivalent 3-CNF formula.

Homework 3

