Overview

Attempt to understand essential nature of computation by studying properties of simple machine models.

Goal: simplest machine that is "as powerful" as conventional computers.

Surprising Fact 1.

Surprising Fact 2.

Adding Power to FSA

FSA advantages:

- Extremely simple and cheap to build.
- Well suited to certain important tasks.
 - pattern matching, filtering, dishwashers, remote controls, traffic lights, sequential circuits

FSA disadvantages:

- Not sufficiently "powerful" to solve numerous problems of interest.

How can we make FSAs more powerful?

- NFSA = FSA + "nondeterminism."
 (ability to guess the right answer!)

Nondeterministic Finite State Automata

Nondeterministic FSA (NFSA).

- Simple machine with N states.
- Start in state 0.
- Read a bit.
- Depending on current state and input bit
 - move to any of several new states
- Stop when last bit read.
- Accept if ANY choice of new states ends in state X, reject otherwise.
Nondeterministic Finite State Automata

Nondeterministic FSA (NFSA).
- Simple machine with N states.
- Start in state 0.
- Read a bit.
- Depending on current state and input bit
 - move to any of several new states
- Stop when last bit read.
- Accept if ANY choice of new states ends in state X, reject otherwise.

If in state 2, and next bit is 1:
- can move to state 1
- can move to state 2
- can move to state 3

If in state 2, and next bit is 0:
- can't move to any state

Which strings are accepted?
- 0010001
- 00
- 1000111001100
- 1000111001101

NFSA Example 2

Build an NFSA to match all strings whose 5th to last character is 'x'.
- `% egrep 'x....$' /usr/dict/words
 asphyxiate
carboxylic
contextual
inflexible

Which strings are accepted? 00
A Systematic Method for NFSA

Harder to determine whether an NFSA accepts a string than an FSA.
- For FSA, only one possible path to follow.
- For NFSA, need to consider many paths.

Systematic method for NFSA.
- Keep track of ALL possible states that the NFSA could be in for a given input.
- Accept if one of possible ending states is accept state.

Power of nondeterminism is very useful, but is it essential?

FSA - NFSA Equivalence

Theorem: FSA and NFSA are "equally powerful".
- Given any NFSA, can construct FSA that accepts same inputs.

Notation: \(X \subseteq Y \).
- \(Y \) is at least as powerful as \(X \).
- Machine class \(Y \) can be "programmed" to accept all the languages that \(X \) can (and maybe more).

Proof (Part 1): \(\text{FSA} \subseteq \text{NFSA} \).
- A FSA is a special type of NFSA.

RE – FSA Equivalence

Theorem: FSA and RE are "equally powerful".
- We'll spare you the details.
- Interested students: see supplemental lecture slides.
Pushdown Automata

How can we make FSA’s more powerful?
- Nondeterminism didn’t help.
- Instead, add “memory” to the FSA.
- A pushdown stack (amount of memory is arbitrarily large).

Pushdown Automata (PDA).
- Simple machine with N states.
- Start in state 0.
- Read a bit, check bit at top of stack.
- Depending on current state/input bit/stack bit:
 - move to new state
 - push the input onto stack, or pop topmost element from stack
- Stop when last bit is read.
- Accept if stack is EMPTY, reject otherwise.

Pushdown Automata

PDA for deciding whether input is of form 0^N 1^N.
- N 0’s followed by N 1’s for some N.
- ε, 01, 0011, 000111, 00001111, ...
- Use notation x/y/z
- If input is x and top of stack is y, then do z.

Turing Machine

Turing Machine.
- Simple machine with N states.
- Start in state 0.
- Input on an arbitrarily large TAPE that can be read from “and” written to.
- Read a symbol from tape.
- Depending on current state and input symbol
 - write a symbol to tape
 - move tape right or left
 - move to new state
- Stop if enter yes or no state.
- Accept if yes, reject if no or does not terminate.
Some Examples

Build Turing machines that accepts following languages:

- Equal number of 0's and 1's.

 $\#1100\#, \#0011\#, \#011101110000\#

- Even length palindromes of 0's and 1's.

 $\#0110\#, \#110011\#, \#10111000011101\#

- Power of two 1's.

 $\#1\#, \#11\#, \#1111\#, \#11111111\#

Notation.

- $x/y/z$: if TM head contains character x, then change it to y, and move head in direction z.
- $\#$: special character.

C Program to Simulate Turing Machine

Three character alphabet (0 is ‘blank’).

Position on tape.

- head

Input: description of machine (9 integers per state s).

- next[i][s] = t: if currently in state s and input character read in is i, then transition to state t.
- out[i][s] = w: if currently in state s and input character read in is i, then write w to current tape position.
- move[i][s] = ± 1: if currently in state s and input character is i, then move head one position to left or right.
- tape[i] is i^{th} character on tape initially.

Details missing:

- Might run off end of tape.

C Program to Simulate Turing Machine

```
define MAX_TAPE_SIZE   2000
#define STATES   100
#define ACCEPT_STATE      99
...
int next[3][STATES], out[3][STATES], move[3][STATES];
char tape[MAX_TAPE_SIZE];
int in, d, state = 0, head = MAX_TAPE_SIZE / 2;
...
/* read in machine from file */
while (scanf("%1d", &d) != EOF)
tape[head++] = d;
while (state != ACCEPT_STATE) {
  in = tape[head];
  tape[head] = out[in][state];
  head += move[in][state];
  state = next[in][state];
}
```

Nondeterministic Turing Machine

TM with extra ability:

- Choose one of several possible transition states given current tape contents and state.
- No more powerful than deterministic TM.
- Faster than TM? (Stay tuned for NP-Completeness).

Exercise:

- Nondeterministic TM to recognize language of all bit strings of the form ww for some w.
 - 110110
 - 1001111000111100111000011111100001111110001111
Abstract Machine Hierarchy

Each machine is strictly more powerful than the previous.
- Power = can recognize more languages.

Are there limits to machine power?

Corresponding hierarchy exists for languages.
- Essential connection between machines and languages.
 (See Lecture T3.)

<table>
<thead>
<tr>
<th>Machine</th>
<th>Nondeterminism adds power?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite state automata</td>
<td>No</td>
</tr>
<tr>
<td>Pushdown automata</td>
<td>Yes</td>
</tr>
<tr>
<td>Linear bounded automata</td>
<td>Unknown</td>
</tr>
<tr>
<td>Turing machine</td>
<td>No</td>
</tr>
</tbody>
</table>

Summary

Abstract machines are foundation of all modern computers.
- Simple computational models are easier to understand.
- Leads to deeper understanding of computation.

Goal: simplest machine "as powerful" as conventional computers.

Abstract machines.
- FSA: simplest machine that is still interesting.
 - pattern matching, sequential circuits (Lecture T1)
 - can't recognize: equal number of 0's and 1's
- PDA: add read/write memory in the form of a stack.
 - compiler design (Lecture T3)
 - can't recognize: palindromes
- TM: add memory in the form of an arbitrarily large array.
 - general purpose computers (Lecture T4)
 - can't recognize: stay tuned

Lecture T2: Extra Slides

Lecture T2: Extra Slides

FSA, NFSA, and RE Are Equivalent

Theorem: FSA, NFSA, and RE are "equally powerful".
- NFSA ⊆ FSA

Proof sketch (part 2): FSA ⊆ RE
- Goal: given an FSA, find a RE that matches all strings accepted by the FSA and no other strings.
- Main idea: consider
 - paths from start state(s) to accept state(s): 00 | 01
 - directed cycles: (1*) (00 | 01) (11 | 10) *

Diagram:

```
0 1
\---\---
|     |
|     |
1 0
0 1
```

Diagram: FSA, NFSA, and RE Are Equivalent
Theorem: FSA, NFSA, and RE are "equally powerful".

- NFSA ⊆ FSA ⊆ RE

Proof sketch (part 3): RE ⊆ NFSA

- Goal: given a RE, construct a NFSA that accepts all strings matched by the RE, and rejects all others.
- Use the following rules to construct NFSA:

```
FSA, NFSA, and RE Are Equivalent
```

Example.

- RE: 01(00 | 101)*

```
FSA, NFSA, and RE Are Equivalent
```

Example.

- RE: 01(00 | 101)*

```
FSA, NFSA, and RE Are Equivalent
```

Example.

- RE: 01(00 | 101)*

- ε transition: jump states without reading a character to next state
FSA, NFSA, and RE Are Equivalent

Example.

- RE: $01(00 | 101)^*$

Theorem: FSA, NFSA, and RE are "equally powerful".

- NFSA \subseteq FSA \subseteq RE \subseteq NFSA

Equivalence of languages and machine models is essential in the theory of computation.

Nondeterminism Does Help PDA’s

Nondeterministic pushdown automata (NPDA).

- Same as PDA, except depending on current state/input bit/stack bit
 - move to ANY OF SEVERAL new states
 - push the input onto stack, or pop top-most element from stack

NPDA to recognize all (even length) palindromes.

- Bit string is the same forwards and backwards.

Nondeterministic PDA more powerful than deterministic PDA.

- PDA \subseteq NPDA trivially.
- PDA cannot recognize language of all (even length) palindromes, but NPDA can.
- Therefore PDA \subsetneq NPDA.
Pushdown Automata

How can we make FSA more powerful?
 - NPDA = FSA + stack + nondeterminism.

Did it help?
 - Can recognize language of all palindromes.
 - Can’t recognize some languages:
 - equal number of 0’s 1’s and 2’s
 - $0^N1^N2^N$
 - bit strings with a power of two 1’s
 - Need still more powerful machines.

Linear Bounded Automata

Turing machine.
 - No limit on length of tape.

Linear bounded automata (LBA).
 - A single tape TM that can only write on the portion of the tape containing the input.
 - Note: allowed to increase alphabet size if desired.

LBA is strictly less powerful than TM.
 - There are languages that can be recognized by TM but not a LBA.
 - We won’t dwell on LBA in this course.