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Abstract
We present a new set of algorithms for line-art rendering of smooth
surfaces. We introduce an efficient, deterministic algorithm for
finding silhouettes based on geometric duality, and an algorithm
for segmenting the silhouette curves into smooth parts with con-
stant visibility. These methods can be used to find all silhouettes in
real time in software. We present an automatic method for generat-
ing hatch marks in order to convey surface shape. We demonstrate
these algorithms with a drawing style inspired byA Topological
Picturebookby G. Francis.

CR Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Pic-

ture/Image Generation–Display algorithms.

Additional Keywords: Non-photorealistic rendering, silhouettes, pen-and-ink illus-

tration, hatching, direction fields.

1 Introduction
Line art is one of the most common illustration styles. Line drawing
styles can be found in many contexts, such as cartoons, technical il-
lustration, architectural design and medical atlases. These drawings
often communicate information more efficiently and precisely than
photographs. Line art is easy to reproduce, compresses well and, if
represented in vector form, is resolution-independent.

Many different styles of line art exist; the unifying feature of
these styles is that the images are constructed from uniformly col-
ored lines. The simplest is the style of silhouette drawing, which
consists only of silhouettes and images of sharp creases and object
boundaries. This style is often sufficient in engineering and archi-
tectural contexts, where most shapes are constructed out of simple
geometric components, such as boxes, spheres and cylinders. This
style of rendering captures only geometry and completely ignores
texture, lighting and shadows. On the other end of the spectrum
is the pen-and-ink illustration style. In pen-and-ink illustrations,
variable-density hatching and complex hatch patterns convey infor-
mation about shape, texture and lighting. While silhouette drawing
is sufficient to convey information about simple objects, it is of-
ten insufficient for depicting objects that are complex or free-form.
From many points of view, a smooth object may have no visible
silhouette lines, aside from the outer silhouette (Figure 8), and all
the information inside the silhouette is lost. In these cases, can be
added to indicate the shape of the surface.

The primary goal of our work was to develop rendering
techniques for automatic generation of line-art illustrations of
piecewise-smooth free-form surfaces. When using conventional
photorealistic rendering techniques (e.g. Z-buffer or ray tracing)

Figure 1: Illustrations of the Cupid mesh.

one can typically replace a smooth surface with a polygonal approx-
imation, and thus reduce the problem to that of rendering polygo-
nal meshes. This no longer true when our goal is to generate line
drawings. Some differential quantities associated with the smooth
surface must be recovered in order to generate visually pleasing
hatch directions and topologically correct silhouette lines. Some
of the problems that occur when a smooth surface is replaced by
its polygonal approximation are discussed in greater detail in Sec-
tion 4.

In this paper we address two general problems: computing sil-
houette curves of smooth surfaces, and generating smooth direction
fields on surfaces that are suitable for hatching. The algorithms
that we have developed can be used to implement a number of
non-photorealistic rendering techniques. Our main focus is on a
particular rendering style, which aims to communicate all essential
information about the shape of the surface with a limited amount of
hatching.
Contributions. Algorithms. To support rendering of smooth sur-
faces, we have developed a number of novel algorithms including:

• An efficient, deterministic algorithm for detecting silhouettes;
(Section 4.3). In addition to non-photorealistic applications, this
method can be used to accelerate computation of shadow volumes.
• An algorithm for cusp detection and segmentation of silhouette
curves into smooth parts with constant visibility (Section 4.2).
• An algorithm for computing smooth direction fields on surfaces,
suitable for use in hatching (Section 5). These fields have a wide
range of uses, ranging from high-quality pen-and-ink rendering to
interactive illustration and hatching.

An important feature of our approach is that any polygonal mesh
can serve as input; the smooth surface that we render is inferred
from the mesh. We do not assume an explicitly specified parame-



terization, which make our approach more general than previously
developed techniques.
Rendering style.We have developed a new non-photorealistic ren-
dering style based on the techniques of Francis [15], and influenced
by the cartoons of Thomas Nast [34] and others.

The rules for drawing in this style are described in Section 6.

2 Previous Work
The methods used in nonphotorealistic rendering can be separated
into two groups: image-space and object-space. The image-based
approach is general and simple; however, it is not particularly suit-
able for generating concise line drawings of untextured smooth sur-
faces. Image-based techniques are presented in [5, 30, 7, 18, 6, 28];
these algorithms exploit graphics hardware to produce image preci-
sion silhouette images. Our technique is an object space method; it
directly uses the 3D representation of objects, rather than their im-
ages. Winkenbach and Salesin [36] describe a method for produc-
ing appealing pen-and-ink renderings of smooth surfaces. Paramet-
ric lines on NURBS patches were used to determine the hatch direc-
tions and silhouette lines were computed using polyhedral approx-
imation to the surface. Their main technical focus is on using the
hatch density to render complex texture and lighting effects. Their
system relied on a surface parameterization to produce hatch di-
rections; however, such a parameterization does not exist for many
types of surfaces, and can often be a poor indicator of shape when
it does exist. Elber [12, 13] and Interrante [21] used principal cur-
vature directions for hatching. Curvatures generally provide good
hatch directions, but cannot be reliably or uniquely computed at
many points on a surface. Our system makes use of the principle
curvature directions, and uses an optimization technique to “fill in”
the hatching field where it is poorly-defined. Deussen et al. [9] use
intersections of the surfaces with planes; while being quite flexible,
this approach requires segmentation of the surface into parts, where
different groups of planes are used; the plane orientations computed
using skeletons relate only indirectly to the local surface properties.

Our work also draws on techniques developed for vector field vi-
sualization [8, 22]. It should be noted that relatively little work has
been done on generating fields on surfaces as opposed to visualiza-
tion of existing fields. Elber [12, 13] discuses the relative merits
of some commonly-used hatching fields (principle curvature direc-
tions, field of tangents to the isoparametric lines, the gradient field
of the brightness).

Silhouette detection is an important component of many non-
photorealistic rendering systems. Markosian et al. [25] presented
a randomized algorithm for locating silhouettes; this system is fast
but does not guarantee that all silhouettes will be found. Gooch et
al. [18] and Benichou and Elber [3] proposed the use of a Gauss
map to efficiently locate all object silhouettes under orthographic
projection. In this paper, we present a new method for silhouette
detection that is fast, deterministic, and applicable to both ortho-
graphic and perspective projection.

Our method for computing the silhouette lines of free-form sur-
faces is closely related to the work of [14, 17] in computing silhou-
ettes for NURBS surfaces.

3 Overview
In this section we present a general overview of our algorithms.
Surface representation.The input data for our system is a polyg-
onal mesh that approximates a smooth surface. Polygonal meshes
remain the most common and flexible form for approximating sur-
faces. However, information about differential quantities (normals,
curvatures, etc.) associated with the original surface is lost. We
need a way to estimate these quantities and compute, if necessary,
finer approximations to the original smooth surface. This can be

Figure 2: Klein bottle. Lighting and hatch directions are chosen to
convey surface shape. Undercuts and Mach bands near the hole and
the self-intersection enhance contrast.

done if we choose a method that allows us to construct a smooth
surface from an approximating arbitrary polygonal mesh, and easily
compute the associated differential quantities (normals, curvatures,
etc.).

We use piecewise-smooth subdivision, similar to the algorithms
presented in [20], with an important modification (Appendix A) to
make the curvature well-defined and nonzero at extraordinary ver-
tices. However, other ways of defining smooth surfaces based on
polygonal meshes can be used, provided that all the necessary quan-
tities can be computed.
Algorithms. Our rendering technique has three main stages: com-
putation of a direction field on the surface, computation of the sil-
houette lines and generation of hatch lines.
Hatch direction field.This stage defines a view-independent field
on the surface that can be used later to generate hatches. Rather than
defining two separate directional fields, we define a singlecross
field (Section 5) for hatches and cross-hatches. The main steps of
our algorithm are: smooth the surface if necessary; compute an
initial approximation to the field in areas of the surface where it is
well defined, initialize the directions arbitrarily elsewhere; optimize
the directions in places where the cross field was not well defined.
Silhouette curve computation.We compute the curves in several
steps (Section 4): compute boundary, self-intersection and crease
curves, as well as boundaries of flat areas; compute silhouette
curves as zero-crossings of the dot product of the normal with the
view direction; find cusps, determine visibility, and segment the sil-
houette curves into smooth pieces.
Hatch generation.Our hatch generation algorithms follow some
of the rules described by Francis [15] (Section 6). The surface is
divided into four levels of brightness with corresponding levels of
hatching: highlights and Mach bands (no hatching), midtones (sin-
gle hatching), shadowed regions (cross-hatching), and undercuts
(dense cross-hatching). Line thickness varies within each region
according to the lighting. Undercuts and Mach bands are used to
increase contrast where objects overlap. Lights are placed at the
view position or to the side of the object. The hatching algorithm
covers all hatch regions with cross-hatches, then removes hatches
from the single hatch regions as necessary.

4 Computing Silhouette Drawings
In this section we describe algorithms for generating the simplest
line drawings of smooth surfaces, which we call silhouette draw-
ings. A silhouette drawing includes only the images of the most
visually important curves on the surface: boundaries, creases, sil-
houette lines and self-intersection lines. Finding intersections of



smooth surfaces is a complex problem, which we do not address in
the paper. We find self-intersections of a mesh approximating the
surface and assume that self-intersection lines of the mesh approx-
imate the self-intersection curves of the surface sufficiently well.
Boundary curves and creases are explicitly represented in the sur-
face; thus, we focus our attention on the problem of computing the
silhouette lines. We will refer to the creases, boundaries and self-
intersection curves asfeature curves.

Before proceeding, we recall several definitions1. First, we de-
fine more precisely what we mean by a piecewise-smooth surface.
A piecewise-smooth surface can be thought of as a finite union of
a number of smooth surfaces with boundaries. A smooth embed-
ded surface is a subsetM of R3 such that for any pointp of this
subset there is a neighborhoodU(p) = Ballε(p) ∩ M and aC1-
continuous nondegenerate one-to-one mapF(u, v) from a domain
D in R2 onto U(p). The domainD can be taken to be an open
disk for interior points, and a half-disk (including the diameter, but
excluding the circular boundary) for smooth boundary points. It
follows from the definition that the normalFu ×Fv is defined and
is nonzero everywhere on the surface. The direction ofFu × Fv

at any point of the surface is independent, up to a sign, of the local
parameterizationF and is denotedn(p).

Thesilhouette setfor the smooth surface is the set of pointsp of
the surface such that(n(p) · (p − c)) = 0, wherec is the view-
point. The silhouette is in general a union of flat areas on the sur-
face, curves and points. We isolate flat areas and consider them
separately. Isolated silhouette points are unstable, and are not rele-
vant for our purposes. For a surface that does not contain flat areas
and isC2, the silhouette for a general position of the viewpoint
can be shown to consist ofC1 non-intersecting curves (silhouette
curves).

An important role in our constructions is played by thecurvature
of the surface. More specifically, we are interested in principal cur-
vatures and principal curvature directions. The two principal curva-
tures at a pointp are maximal and minimal curvatures of the curves
obtained by intersecting the surface with a plane passing throughp
and containing the normal to the surface. The principal curvature
directions are the tangents to the curves for which the maximum
and minimum are obtained; these directions are always orthogonal
and lie in the tangent plane to the surface. The formulas expressing
these quantities in terms of the derivatives ofF are standard and
can be found, for example, in [4]. The most important property of
the principal curvatures that we use can be formulated as follows:if
a surface has principal curvaturesκ1 andκ2, and the unit vectors
along principal directions and the normal are used to define an or-
thonormal coordinate system(r, s, t), with r ands parameterizing
the tangent plane then locally the surface is the graph of a function
over the tangent plane

t = κ1r
2 + κ2s

2 + o(r2 + s2) (1)

It follows that principal curvatures and principal curvature direc-
tions locally define the best approximating quadratic surface.

4.1 Silhouettes of Meshes and Smooth Surfaces

The simplest approach to computing the silhouette curves would
be to replace the smooth surface with its triangulation and find the
silhouette edges of the triangular mesh. However, there are sig-
nificant differences between the silhouettes of smooth surfaces and
their approximating polygonal meshes (Figure 4). For polygonal
meshes, complex cusps (Figure 3), where several silhouette chains
meet, are stable, that is, do not disappear when the viewpoint is
perturbed. Singularities of projections of polyhedra were studied

1We do not state rigorous mathematical definitions in complete detail; an
interested reader can find them in most standard differential geometry texts.

in considerable detail (see a recent paper [2] for pointers); a simple
classification in the two-dimensional case, which does not appear to
be explicitly described elsewhere, can be found in [1]. For smooth
surfaces, the only type of stable singularity is a simple cusp, as it
was shown in the classic paper by Whitney [35]. As a consequence,
silhouette curves on smooth surfaces are either closed loops, or start
and end on feature lines, while on polygonal surfaces they may in-
tersect, and their topology is more complex. Moreover, we observe

complex polygonal 
cusp

simple smooth
cusp

Figure 3: Left: Complex cusps are stable on polygonal meshes.
Right: Only simple cusps are stable on smooth surfaces.

thatno matter how fine the triangulation is, the topology of the sil-
houette of a polygonal approximation to the surface is likely to be
significantly different from that of the smooth surface itself. This
does not present a problem for fixed-resolution images: if the dis-
tance between the projected silhouette of the mesh and the projected
silhouette of the smooth surface is less than a pixel, the topological
details cannot be distinguished. However, if we do want to generate
resolution-independent images capturing the essential features of
the silhouette of the smooth surface correctly, or apply line styles to
the silhouette curves, the polygonal approximation cannot be used.
(Figure 4). Similar observations were made in [5].

To preserve the essential topological properties of silhouettes, we
compute the silhouette curves using an approach similar to the one
used in [14, 17] for spline surfaces. Recall that the silhouette set of
a surface is the zero set of the functiong(p) = (n(p) · (p − c))
defined on the surface. The idea is to compute an approximation to
this function and find its zero set. For each vertexp of the polyg-
onal approximation, we compute the true surface normal andg(p)
at the vertex. Then the approximation to the functiong(p) is de-
fined by linear interpolation of the values of the function. As the
resulting function is piecewise-linear, the zero set will consist of
line segments inside each triangle of the polygonal approximation.
Moreover, we can easily enforce the general position assumption by
picking arbitrarily the sign of the functiong(p) at vertices where it
happens to be exactly zero. As a result, the line segments of the
zero set connect points in the interior of the edges of the mesh,
and form either closed loops or non-intersecting chains connecting
points on the feature lines (Figure 4), similar in structure to the ac-
tual silhouette curves. We may miss narrow areas on the surface
where the sign is different from surrounding areas. It is easy to see,
however, that the silhouette curves we obtain by our method will
have the same topology as the silhouette curves of some surface
obtained by a small perturbation of the original. This means that
we are guaranteed to have a plausible image of a surface, but it may
not accurately reflect features of size on the order of the size of a
triangle of the approximating mesh in some cases. The silhouette
algorithm is described in greater detail in [19].

4.2 Cusp Detection

While the silhouette curves on the surface do not have singularities
in a general position, the projected silhouette curves in the image
plane do; there is a single stable singularity type, aside from termi-
nating points at feature lines: a simple cusp (Figure 3). The most
straightforward way to detect these singularities is to examine the
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Figure 4: (a) Silhouette edges of a polygonal approximation pro-
duce jagged silhouette curves. (b) Our method produces smooth
silhouette curves by inferring information about the smooth surface
from the polygonal mesh. (c) The same curves shown from another
viewpoint and overlayed. (d) A complex cusp occurs in the polyg-
onal approximation when the surface is nearly parallel to the view
direction. This does not occur in the smooth silhouette curve. (e)
Smooth line drawing of the “smiling torus.” The red box shows the
location of the curves in (a)-(c).

tangents of the silhouette curves; cusps are the points where the tan-
gent is parallel to the view direction. However, this approach is not
numerically reliable, especially if the silhouette curves are approx-
imated by polylines. We propose a new, numerically more robust
way to find the cusps, using the following geometric observations.

Consider a silhouette pointp with principal curvature directions
w1 and w2 and principal curvaturesκ1 and κ2. Let c be the
viewpoint; sincep is the silhouette point, the viewing direction
v = c − p is in the tangent plane. Let[c1, c2, 0] be the compo-
nents ofc with respect to the coordinates(r, s, t) associated with
the principal curvature directions, computed byc1 = (v · w1) and
c2 = (v·w2). As we have observed,p is a cusp when the tangent to
the silhouette atp is parallel to the viewing directionv. The tangent
to the silhouette can easily be expressed in terms of curvature. Ap-
proximation (1) yields the following approximation to the normals
in a small neighborhood nearp: n(r, s) = [−2κ1r,−2κ2s, 1].
The equation of the 2nd order approximation to the silhouette curve
is an implicit quadratic equation,g(r, s) = (n(r, s) · v(r, s)) = 0,
wherev(r, s) is the viewing directionc − p(r, s) = [c1 − r, c2 −
s,−κ1r

2 − κ2s
2]. We calculate the vector perpendicular to the

silhouette atp as∇g(0, 0) = [−2κ1c1,−2κ2c2]. The resulting
condition for the viewing direction to be parallel to the silhouette
tangent (or, equivalently, perpendicular to∇g(0, 0)) to the view-
ing direction isκ1c

2
1 + κ2c

2
2 = 0. Therefore, we can define a

parameterization-independent scalar function on the surface which
we call thecusp function:

C(p) = κ1 (v · w1)
2 + κ2 (v · w2)

2

where all quantities are evaluated at pointp. This function has the
following important property:cusps are contained in the intersec-
tion set of the two families of curves: one obtained as the zero set
of the functiong(p), the other as the zero set of the cusp function
C(p) (Figure 5). The zero set ofC(p) can be approximated in
the same way as the zero set ofg(p); each triangle of the polygo-
nal mesh may contain a single line segment approximating the zero
set ofC(p) and another approximating the zero set ofg(p). This
allows us to compute approximate cusp locations robustly, without
introducing many spurious cusps, and at the same time using rela-
tively coarse polygonal approximations to the smooth surface.

Figure 5: Left: Cusps are found as intersections of zero sets of
two functions defined on the surface, the dot product of the normal
with the viewing direction and the cusp function. The silhouette
curve is shown in blue, the cusp zero set in red.Right: The same
curves; view from a viewpoint different from the one that was used
to compute the curves.

4.3 Fast Silhouette Detection

In the previous section, we have presented an algorithm for con-
structing approximations to the silhouette curves which, when im-
plemented in the simplest way, requires complete traversal of the
mesh. Such a traversal is unnecessary; typically, only a small per-
centage of mesh faces contain silhouettes [25, 23]. For polygo-
nal meshes, a number of fast techniques were developed that allow
one to avoid complete traversal. A stochastic algorithm was pro-
posed in [25]. A deterministic algorithm based on the Gauss map
was proposed in [3, 18], but is restricted to orthographic projection.
We present a new deterministic algorithm for accelerated location
of silhouettes, which works for both orthographic and perspective
projection. This algorithm is equally suitable for finding silhouettes
defined as zero sets, and for finding silhouette edges of polygonal
meshes.

Our algorithm is based on the concept ofdual surfaces.The
points of the dual surfaceM ′ are the images of the tangent planes
to a surfaceM under a duality map, which maps each plane
Ax + By + Cz + D = 0 to the homogeneous point[A, B, C, D].
More explicitly, M ′ can be obtained by mapping each point of
M to a homogeneous pointN = [n1, n2, n3,−(p · n)], where
n = [n1, n2, n3, 0] is the unit normal atp. Note that the inverse
is also true: each plane in the dual space corresponds to a point in
the primal space. LetC = [c1, c2, c3, c4] be our viewpoint in the
homogeneous form. Then the silhouette of the surface consists of
all pointsp for which C is in the tangent plane at that point. For
perspective projection, this means that(C ·N) = (c−p) ·n = 0.
For orthographic projection, the homogeneous formula is the same:
(C ·N) = (c ·n) = 0, wherec is interpreted as the view direction.
Our algorithm is based on the following observation:the image of
the silhouette set of the surface with respect to the viewpointC un-
der the duality map is the intersection of the plane(C · x) = 0,
with the dual surface.This fact allows us to reduce the problem of
finding the silhouette to the problem of intersecting a plane with a
surface (Figure 7), for which many space-partition-based accelera-
tion techniques are available. However, an additional complication
is introduced by the fact that some points of the dual surface may be
at infinity. This does not allow us to consider only the finite part of
the projective space, which can be identified withR3. However we
can identify the whole 3D projective space with points of the unit
hypersphereS3, or, equivalently, of the boundary of a hypercube,
in four-dimensional space. As four-dimensional space is somewhat
difficult to visualize, we show the idea of the algorithm on a 2D
example in Figure 6. In the 2D case, the problem is to compute all
silhouette pointson a curve, that is, the points for which the tangent
line contains the viewpoint.

While the geometric background is somewhat abstract, the actual
algorithm is quite simple. The input to the algorithm is a polygonal
mesh, with normals specified at vertices, if we are computing sil-
houettes using zero-crossings. The normals are not necessary if we
are locating the silhouette edges of the polygonal mesh. There are
two parts to the algorithm: initialization of the spatial partition and
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Figure 6: Left: Using a dual curve to find silhouette points. The
figure shows a curve in the planez = 1 and its dual on a sphere.
The blue arrow is the vectorc from the origin in 3D to the viewpoint
in the plane, the blue circle is the intersection of the plane passing
through the origin perpendicular toc with the unit sphere. The red
points are a silhouette point and its dual. The silhouette point can be
found by intersecting the blue circle with the dual curve and retriev-
ing corresponding point on the original curve.Right: Reducing the
intersection problem to planar subproblems. The upper hemisphere
containing the dual curve is projected on the surface of cube and at
most 5 (in this case 3) planar curve-line intersection problems are
solved on the faces.

Figure 7: Silhouette lines under the duality map correspond to the
intersection curve of a plane with the dual surface.Top: Torus
shown from camera and side views.Bottom:The eight 3D faces of
the hypercube, seven of which contain portions of the dual surface.
The viewpoint dual is shown as a blue plane. Silhouettes occur at
the intersection of the dual plane with the dual surface.

intersection of the dual surface with the plane corresponding to the
viewpoint. The second part is fairly standard, so we focus on the
first part.
Step 1: For each vertexp with normaln, we compute the dual
positionN = [n1, n2, n3,−(p · n)]. The dual positions define
the dual mesh which has different vertex positions but the same
connectivity.
Step 2: Normalize each dual positionN using l∞-norm, that is,
divide bymax(|N1|, |N2|, |N3|, |N4|). After division, at least one
of the componentsNi, i = 1..4, becomes 1 or -1. The resulting
four-dimensional point is on the surface of the unit hypercube. The
three-dimensional face of the cube on which the vertex is located is
determined by the index and sign of the maximal component.
Step 3: Each triangle of the dual mesh is assigned to a list for every
three-dimensional face in which it has a vertex.
Step 4: An octtree is constructed for each three-dimensional face,
and the triangles assigned to this face are placed into the octtree.

The second step of the algorithm, which is repeated for each
frame, uses the octtree to find the silhouette edges for a given cam-
era position by intersecting the dual plane with the dual surface.

We have implemented an interactive silhouette viewer based on
the dual space method. In our tests, silhouette tests were performed

on twice as many triangles as there were actual triangles contain-
ing silhouettes, suggesting that performance is roughly linear in
the number of silhouette triangles. This represents a substantial
speedup over traversing the entire mesh. Silhouette edge detec-
tion and visibility calculations on the three-times subdivided Venus
model (∼90,000 triangles) can be performed at approximately 17
frames per second on a 225 MHz SGI Octane, without using graph-
ics hardware, which is similar to the performance of the nondeter-
ministic algorithm of [25].

4.4 Visibility

Before computing visibility, we separate the silhouette curves into
segments. Visibility is determined for each segment. The follow-
ing points are used to separate segments: cusps, silhouette-feature
joints, and inverse images of silhouette-feature and silhouette-
silhouette intersections in image space. Visibility can change only
at these points, thus each segment is either completely visible or
invisible.

Determining visibility is fundamentally difficult for smooth sur-
faces, because it cannot be inferred precisely from visibility of the
approximating mesh. Our algorithm can only guarantee that the
correct visibility will be produced if the mesh is sufficiently fine, us-
ing a theoretically-estimated required degree of refinement. How-
ever, the estimate is too conservative and difficult to compute to
be practical; in our implementation, we refine the mesh to a fixed
subdivision level.

Our visibility algorithm is based on the following observation: at
any area on the surface, the rate of change of the normal is bounded
by the maximal directional curvature. For a sufficiently fine triangu-
lation, one can guarantee that for any triangle for which(n·(p−c))
changes sign, there is a silhouette edge of the polygonal approxi-
mation adjacent to a vertex of the triangle. We use the visibility
of these edges to compute visibility of the silhouette curves. The
visibility of the silhouette edges can be determined using known
techniques (e.g. [25]).

For each curve we find visibility of all nearby silhouette edges
(which is not necessarily consistent) and use the visibility of the
majority of the edges to determine visibility of the chain. It is pos-
sible to show that this method will produce correct visibility for
sufficiently fine meshes in the following sense: there is a smooth
surface for which the precise projection has the same topology as
the one computed by our method.

In practice, we have found that the algorithm performs well even
without extra refinement near the silhouettes, provided that the orig-
inal mesh is sufficiently close to the surface. An efficient algorithm
with better-defined properties would be useful.

5 Direction Fields on Surfaces
Fields on surfaces. To generate hatches, we need to choose sev-
eral direction fields on visible parts of the surface. The direction
fields are different from the more commonly used vector fields: un-
like a vector field, a direction field does not have a magnitude and
does not distinguish between the two possible orientations.

The fields can either be defined directly in the image plane as
in [31], or defined on the surface and then projected. The advan-
tage of the former method is that the field needs to be defined and
continuous only in each separate area of the image. However, it is
somewhat more difficult to use the information about the shape of
the objects when constructing the field, and the field must be re-
computed for each image. We choose to generate the field on the
surface first.

A number of different fields on surfaces have been used to define
hatching directions. The most commonly-used field is probably the
field of isoparametric lines; this method has obvious limitations,
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Figure 8: Direction fields on the Venus. (a) Silhouettes alone do not convey the interior shape of the surface. (b) Raw principle curvature
directions produce an overly-complex hatching pattern. (c) Smooth cross field produced by optimization. Reliable principal curvature
directions are left unchanged. Optimization is initialized by the principal curvatures. (d) Hatching with the smooth cross field. (e) Very
smooth cross field produced by optimizing all directions. (f) Hatching from the very smooth field.

as the parameterization may be very far from isometric, and is not
appropriate for surfaces lacking a good natural parameterization,
such as subdivision surfaces and implicit surfaces. The successes
and failures of this approach provide valuable clues for construction
of fields for hatching.

The most natural geometric candidate is the pair of principal cur-
vature direction fields [13, 21]. corresponding to the minimal and
maximal curvatures2. We will refer to the integral lines of these
fields ascurvature lines. These fields do not depend on param-
eterization, capture important geometric features, and are consis-
tent with the most common two-directional hatching pattern. How-
ever, they suffer from a number of disadvantages. All umbilical
points (points with coinciding principal curvatures) are singular-
ities, which means that the fields are not defined anywhere on a
sphere and have arbitrarily complex structure on surfaces obtained
by small perturbations of a sphere. On flat areas (when both cur-
vatures are very small) the fields are likely to result in a far more
complex pattern than the one that would be used by a human.

Other candidates include isophotes (lines of constant brightness)
and the gradient field of the distance to silhouette or feature lines
[25, 12]. Both are suitable for hatching in a narrow band near
silhouettes or feature lines, but typically do not adequately cap-
ture shape further from silhouettes, nor are they suitable for cross-
hatching.

Our approach is based on several observations about successes
and failures of existing methods, as well as hatching techniques
used by artists.

• Cylindric surfaces.Surface geometry is rendered best by princi-
pal curvature directions on cylindrical surfaces, that is, surfaces for
which one of the principal curvatures is zero (all points of the sur-
face are parabolic). This fact is quite remarkable: psychophysical
studies confirm that even a few parallel curves can create a strong
impression of a cylindrical surface with curves interpreted as prin-
cipal curvature lines [32, 24]. Another important observation is that
for cylinders the principal curvature lines are also geodesics, which
is not necessarily true in general. Hatching following the principal
curvature directions fails when the ratio of principal curvatures is
close to one.
Deussen et al. [9] uses intersections of the surface with planes to
obtain hatch directions; the resulting curves are likely to be locally
close to geodesics on slowly varying surfaces.
• Isometric parameterizations.Isoparameteric lines work well as
curvature directions when a parameterization exists and is close

2It is possible to show that for a surface in general position, these fields
are always globally defined, excluding a set of isolated singularities.

to isometric, i.e. minimizes the metric distortion as described in,
for example, [10, 27]. In this case, parametric lines are close to
geodesics. Isoparametric lines were used by [36, 11].
• Artistic examples.We observe that artists tend to use relatively
straight hatch lines, even when the surface has wrinkles. Smaller
details are conveyed by varying the density and the number of hatch
directions (Figure 9).

Figure 9: Almost all hatches in this cartoon by Thomas Nast curve
only slightly, while capturing the overall shape of the surface. Note
that the hatches often appear to follow a cylinder approximating the
surface. Small details of the geometry are rendered using variations
in hatch density.

These observations lead to the following simple requirements for
hatching fields:in areas where the surface is close to parabolic, the
field should be close to principal curvature directions; on the whole
surface, the integral curves of the field should be close to geodesic.
In addition, if the surface has small details, the field should be gen-
erated using a smoothed version of the surface.

Cross fields. While it is usually possible to generate two global
direction fields for the two main hatch directions, we have ob-
served that this is undesirable in general. There are two reasons
for this: first, if we would like to illustrate nonorientable surfaces,
such fields may not exist. Second, and more importantly, there are
natural cross-hatching patterns that cannot be decomposed into two
smooth fields even locally (Figure 10). Thus, we considercross
fields, that is, maps defined on the surface, assigning an unordered
pair of perpendicular directions to each point.

Constructing Hatching Fields. Our algorithm is based on the
considerations above and proceeds in steps.



Figure 10: A cross-hatching pattern produced by our system on
a smooth corner. This pattern cannot be decomposed into two
orthogonal smooth fields near the corner singularity. The ana-
lytic expression for a similar field in the plane isv1(r, θ) =
[cos(θ/4), sin(θ/4)]; v2(r, θ) = [− sin(θ/4), cos(θ/4)]. This
field is continuous and smooth only if we do not distinguish be-
tweenv1 andv2.

Step 1. Optionally, create a smoothed copy of the original mesh.
The copy is used to compute the field. The amount of smoothing
is chosen by the user, with regard to the smoothness of the original
mesh, and the scale of geometric detail the user wishes to capture
in the image. For example, no smoothing might be necessary for a
close-up view of a small part of a surface, while substantial smooth-
ing may be necessary to produce good images from a general view;
in practice we seldom found this to be necessary.
Step 2.Identify areas of the surface which are sufficiently close to
parabolic, that is, the ratio of minimal to maximal curvature is high,
and at least one curvature is large enough to be computed reliably.
Additionally, we mark as unreliable any vertex for which the aver-
age cross field energy of its incident edges exceeds a threshold, in
order to allow optimization of vertices that begin singular.
Step 3. Initialize the field over the whole surface by computing
principal curvature directions. If there are no quasi-parabolic areas,
user input is required to initialize the field.
Step 4.Fix the field in quasi-parabolic areas and optimize the field
on the rest of the vertices, which were marked as unreliable. This
step is of primary importance and we describe it in greater detail.

Our optimization procedure is based on the observation that we
would like the integral lines of our field to be close to geodesics.
We use a similar, but not identical, requirement that the field is as
close to constant as possible. Minimizing the angles between the
world-space directions at adjacent vertices of the mesh is possible,
but requires constrained optimization to keep the directions in the
tangent planes. We use a different idea, based on establishing a
correspondence between the tangent planes at different points of the
surface, which, in some sense, corresponds to the minimal possible
motion of the tangent plane as we move from one point to another.
Then we only need to minimize the change of the field with respect
to the corresponding directions in the tangent planes.

i- ij

vivj

geodesic

j- ji

Figure 11: Moving vectors along geodesics.

Given two sufficiently close pointsp1 andp2 on a smooth sur-
face, a natural way to map the tangent plane atp1 to the tan-
gent plane atp2 is to transport vectors along the geodesics (Fig-
ure 11); for sufficiently close points there is a unique geodesicγ(t),
t = 0..1, connecting these points. This is done by mapping a unit

vectoru1 in the tangent plane atp1 to a unit vectoru2 in the tan-
gent plane atp2, such that the angle betweenu1 and the tangent to
the geodesicγ′(0) is the same as the angle betweenu2 andγ′(1).
In discrete case, for adjacent vertices of the approximating meshvi

andvj , we approximate the tangents to the geodesic by the projec-
tions of the edge(vi,vj) into the tangent planes at the vertices. Let
the directions of these projections betij andtji. Then a rigid trans-
formationTij between the tangent planes is uniquely defined if we
require thattij maps totji and that the transformation preserves
orientation. Then for any pair of tangent unit vectorswi andwj at
vi andvj respectively, we can use‖Tijwi − wj‖ to measure the
difference between directions. One can show that the value of this
expression is the same as‖Tjiwj −wi‖. To measure the difference
between the values of the cross field at two points, we choose a unit
tangent vector for each point. The vectors are chosen along the di-
rections of the cross field. There are four possible choices at each
point. We choose a pair of unit vectors for which the difference is
minimal.

We now explicitly specify the energy functional. The cross
field is described by a single angleθi for each vertexvi, which
is the angle between a fixed tangent directionti, and one of
the directions of the cross field; we do not impose any limita-
tions on the value ofθi, and there are infinitely many choices
for θi differing by nπ/2 that result in the same cross field.
Let ϕij be the direction of the projection of the edge(vi,vj)
into the tangent plane atvi. Using this choice of coordi-
nates, one can show that the quantity‖Tijwi − wj‖ is equal to
mink

√
2 − 2 cos ((θi − ϕij) − (θj − ϕji) + kπ/2). Minimiza-

tion of this quantity is equivalent to minimization ofE(i, j) =
mink (− cos ((θi − ϕij) − (θj − ϕji) + kπ/2)), which is not dif-
ferentiable. We observe, however, thatE0(i, j) = −8E(i, j)4 +
8E(i, j)2 − 1 is just− cos 4 ((θi − ϕij) − (θj − ϕji)), and is a
monotonic function ofE(i, j) on [

√
2/2..1], the range of possi-

ble values ofE(i, j). Thus, instead of minimizingE(i, j), we can
minimizeE0(i, j). We arrive at the following simple energy:

Efield = −
∑

all edges(vi,vj)

cos 4 ((θi − ϕij) − (θj − ϕji))

which does not require any constraints on the variablesθi. Note
that the valuesϕij are constant. Due to the simple form of the
functional, it can be minimized quite quickly. We use a variant of
the BFGS conjugate gradient algorithm described in [37] to per-
form minimization. For irregularly-sampled meshes, the energy
may also be weighted in inverse proportion to edge length. We have
not found this to be necessary for the meshes used in this paper.
The result of the optimization depends on the threshold chosen to
determine which vertices are considered unreliable; in the extreme
cases, all vertices are marked as unreliable and the whole field is op-
timized, or all vertices are marked as reliable and the field remains
unoptimized. Figure 8 shows the results for several thresholds.

6 Rendering Style

6.1 Style Rules

Our rendering style is based to some extent on the rules described
by G. Francis inA Topological picturebook[15], which are in turn
based on Nikoläıdes’ rules for drawing drapes [26]. We have also
used our own observations of various illustrations in similar styles.
We begin our style description by defining undercuts and folds. A
visible projected silhouette curve separates two areas of the image:
one containing the image of the part of the surface on which the
curve is located, the other empty or containing the image of a dif-
ferent part of the surface. We call the former area afold. If the



(a) (b) (c)

Figure 12: Hatching rules shown on drapes. (a) There are 3 main
discrete hatch densities: highlights, midtones, and shadows, corre-
sponding to 0, 1, and 2 directions of hatches. (b) Undercuts. (c)
“Mach bands.” Undercuts and Mach bands increase contrast where
surfaces overlap.

latter area contains the image of a part of the surface, we call it an
undercut.

We use the following rules, illustrated in Figure 12.

• The surface is separated into four levels of hatching: high-
lights and Mach bands (no hatching), midtones (single hatching),
shadowed regions (cross-hatching), and undercuts (dense cross-
hatching). Inside each area, the hatch density stays approximately
uniform. The choice of the number of hatch directions used at a
particular area of the surface is guided by the lighting and the fol-
lowing rules:
• If there is an undercut, on the other side of the silhouette from a
fold, a thin area along the silhouette on the fold side is not hatched
(“Mach band effect”).
• Undercuts are densely hatched.
• Hatches are approximately straight; a hatch is terminated if its
length exceeds a maximum, or if its direction deviates from the
original by more than a fixed angle.
• Optionally, hatch thickness within each density level can be made
inversely proportional to lighting; the resulting effect is rather sub-
tle, and is visible only when the hatches are relatively thick.

6.2 Hatch Placement

The hatching procedure has several user-tunable parameters: basic
hatch density specified in image space; the hatch density for under-
cuts; the threshold for highlights (the areas which receive no hatch-
ing); the threshold that separates single hatch regions from cross
hatch regions; the maximum hatch length; the maximum deviation
of hatches from the initial direction in world space. Varying these
parameters has a considerable effect both on the appearance of the
images and on the time required by the algorithm. Threshold values
are usually chosen to divide the object more or less evenly between
different hatching levels.

Once we have a hatching field, we can illustrate the surface by
placing hatches along the field. We first define three intensity re-
gions over the surface: no hatching (highlights and Mach bands),
single hatching (midtones), and cross hatching (shadowed regions).
Furthermore, some highlight and hatch regions may be marked as
undercut regions. The hatching algorithm is as follows:

1. Identify Mach bands and undercuts.
2. Cover the single and cross hatch regions with cross hatches, and
add extra hatches to undercut regions.
3. Remove cross-hatches in the single hatch regions, leaving only
one direction of hatches.

6.3 Identifying Mach Bands and Undercuts

In order to identify Mach bands and undercuts, we step along each
silhouette and boundary curve. A ray test near each curve point is
used to determine if the fold overlaps another surface. Undercuts
and Mach bands are indicated in a 2D grid, by marking every grid

cell within a small distance of the fold on the near side of the surface
as a Mach band, and by marking grid cells on the far side of the
surface within a larger distance as undercuts. (This is the same 2D
grid as used for hatching in the next section.)

6.4 Cross-hatching

We begin by creating evenly-spaced cross-hatches on a surface. We
adapt Jobard and Lefers’ method for creating evenly-spaced stream-
lines of a 2D vector field [22]. The hatching algorithm allows us to
place evenly-spaced hatches on the surface in a single pass over the
surface.

Our algorithm takes two parameters: a desired hatch separation
distancedsep , and a test factordtest . The separation distance in-
dicates the desired image-space hatch density; a smaller separation
distance is used for undercuts. The algorithm creates a queue of
surface curves, initially containing the critical curves (silhouettes,
boundaries, creases, and self-intersections). While the queue is not
empty, we remove the front curve from the queue and seed new
hatches along it at points evenly-spaced in the image. Seeding cre-
ates a new hatch on the surface by tracing the directions of the
cross-hatching field. Since the cross field is invariant to 90 degree
rotations, at each step the hatch follows the one of four possible
directions which has the smallest angle with the previous direction.
Hatches are seeded perpendicular to all curves. Hatches are also
seeded parallel to other hatches, at a distancedsep from the curve.
A hatch continues along the surface until it terminates in a critical
curve, until the world-space hatch direction deviates from the ini-
tial hatch direction by more than a constant, or until it comes near a
parallel hatch. This latter condition occurs when the endpoint of the
hatchp1 is near a pointp2 on another hatch, such that the following
conditions are met:

• ||p1 − p2|| < dtestdsep , measured in image space.
• A straight line drawn between the two points in image space does
not intersect the projection of any visible critical curves. In other
words, hatches do not “interfere” when they are not nearby on the
surface.
• The world space tangents of the two hatch curves are parallel, i.e.
the angle between them is less than 45 degrees, after projection to
the tangent plane atp1.

The search for nearby hatches is performed by placing all
hatches in a 2D grid with grid spacing equal todsep . This ensures
that at most nine grid cells must be searched to detect if there are
hatches nearby the one being traced.

6.5 Hatch Reduction

Once we have cross-hatched all hatch regions, we remove hatches
from the single hatch regions until they contain no cross-hatches.
By removing hatches instead of directly placing single a hatch di-
rection, we avoid the difficulty inherent in producing a consistent
vector field on the surface. Our algorithm implicitly segments the
visible single-hatch regions into locally-consistent single hatching
fields. This allows us to take advantage of the known view direction
and the limited extent of these regions.

The reduction algorithm examines every hatch on the surface and
deletes any hatch that is perpendicular to another hatch. In particu-
lar, a hatch is deleted if it contains a pointp1 nearby a pointp2 on
another hatch such that:

• p1 andp2 lie within the single hatch region.
• ||p1 − p2|| < 2dsep , measured in image space.
• A straight line drawn between the two points in image space does
not intersect any visible critical curve.
• The world space tangents of the two hatch curves are perpendic-
ular, i.e. the angle between them is greater than 45 degrees after
projection to the tangent plane atp1.



Deleting a hatch entails clipping it to the cross-hatch region; the
part of the hatch that lies within the cross-hatch region is left un-
touched.

The order in which hatches are traversed is important; a naı̈ve
traversal order will usually leave the single hatch region uneven
and inconsistent. We perform a breadth-first traversal to prevent
this. A queue is initialized with a hatch curve. While the queue
is not empty, the front curve is removed from the queue. If it is
perpendicular to another curve in the single hatch region, then the
curve is deleted, and all parallel neighbors of the hatch that have
not been visited are added to the queue. When the queue is empty,
a hatch that has not yet been visited is added to the queue, if any
remain. The tests for perpendicular is as described above; the angle
condition is reversed for the parallel test.

7 Results and Conclusions
Most of the illustrations in this paper were created using our system.
Figures 1, 8 demonstrate the results for relatively fine meshes that
define surfaces with complex geometry. Figures 2 and 13 show
the results of using our system to illustrate several mathematical
surfaces.

The time required to create an illustration varies greatly; while
silhouette drawings can be computed interactively, and the field op-
timization takes very little time, hatching is still time-consuming,
and can take from seconds to minutes, depending on hatch density
and complexity of the model. Also, for each model the parame-
ters of the algorithms (thresholds for hatching, position of the light
sources, hatch density) have to be carefully chosen;

Future work. As we have already mentioned, improvements
should be made to the silhouette visibility algorithm. Performance
was not our goal for the hatching algorithm. It is clear that sub-
stantial speedups are possible. While the quality of fields generated
by our algorithms is quite good, it would be desirable to reduce the
number of parameters that may be tuned.

A more fundamental problem is the lack of control over the the
number, type and placement of singularities of the generated field.
As most surfaces of interest have low genus, the number of singu-
larities can be very small for most surfaces.3 However, the user
currently has little control over their placement and additional sup-
port must be provided. Furthermore, the hatch reduction algorithm
could be made more robust to irregular cross-hatching patterns, and
the hatching could be improved reduce hatching artifacts, perhaps
by employing the optimization technique of Turk and Banks [33].

3The relation between the numbers of singularities of different types is
determined by the analogs of Euler formula; such formulas are known for
vector and tensor fields; obtaining classification of singularities and a for-
mula of this type for the cross fields described in the paper is an interesting
mathematical problem.

(a) (b)

(c) (d)

Figure 13: Several surfaces generated using G. Francis’ generaliza-
tion of Apéry’s Romboy homotopy [16]. (a) Boy surface; (b) “Ida”;
(c) Roman surface; (d) Etruscan Venus.
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A C2-surfaces based on subdivision
Commonly used subdivision surfaces, such as variants of Loop sub-
division, produce either surfaces with curvatures that do not con-
verge or have zero curvature at extraordinary vertices. There are
fundamental reasons for this [29]. This property is rather undesir-
able, if we would like to compute silhouette curves, as it means
either flat points or singular behavior near extraordinary points. We
have developed a surface representation based on subdivision that
produces surfaces that are everywhereC2, do not have zero cur-
vature at extraordinary vertices, and agree arbitrarily well with the
limit surfaces produced by subdivision. This representation is de-
scribed elsewhere [38]. However, for our purposes it is sufficient to
have a way to compute curvatures for the surface associated with a
mesh, and it is not necessary to have a complete surface evaluation
algorithm.

The curvature computation that we propose is based on ideas
from subdivision and is compatible with the curvature computations
for subdivision surfaces in the regular case.

Consider a vertexv of the initial mesh of valencek. We
will regard a part of the smooth surface corresponding to the 1-
neighborhood ofv as parameterized over a regulark-gon in the
plane. Introduce the polar coordinates(r, ϕ) in the plane, with
u = r cos ϕ andv = r sin ϕ. then the second-order approxima-
tion to the surface can be written as

a0 +(a11 sin ϕ+a12 cos ϕ)r+(a20 +a21 sin 2ϕ+a22 cos 2ϕ)r2

A simple calculation shows that the least squares fit tok + 1
points of the 1-neighborhoodp0 . . . pk assumed to be values at
(sin(2πi/k), cos(2πi/k)), i = 0..k. with p0 in the center, leads to

a0 = p0; a20 = −p0 +
1

k
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i
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Note that the formulas fora11 anda21 coincide with the stan-
dard formulas for the tangents to the Loop subdivision surface, and
a20, a21, a22, with appropriate variable changes, produce second
derivatives in the regular case. To make our calculations compati-
ble with the Loop surface, we replacea0 = p0 with a0 = plimit

0 ,
the limit position of the control pointp0. As a result, we obtain a
set of simple rules for computing the coefficients of an approximat-
ing quadratic surface, which, after appropriate change of variables
can be used to compute curvatures and is compatible with the Loop
subdivision rules. In [38], we show that one can construct aC2 sur-
face which has precisely these curvatures at the vertices. A similar
construction works for the boundary case. We should note that for
valencesk = 3, 4, the coefficients of the quadric are not indepen-
dent, and thus not all possible local behaviors can be approximated
well.

Given known partial derivativesFu,Fv,Fuu,Fuv,Fvv of the
local parameterization of the surface, the principal curvature direc-
tions and magnitudes can be computed as eigenvalues and eigen-
vectors of the following matrix:

(
E F
F G

)(
L M
M N

)
(2)

whereE = (Fu · Fu), F = (Fv · Fu), G = (Fv · Fv), L =
(Fuu · n), M = (Fuv · n), N = (Fvv · n).
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