
Interactive Technical Illustration

Bruce Gooch Peter-Pike J. Sloan Amy Gooch Peter Shirley Richard Riesenfeld

Department of Computer Science
University of Utah

http:==www.cs.utah.edu=

Abstract

A rendering is an abstraction that favors, preserves, or even em-
phasizes some qualities while sacrificing, suppressing, or omitting
other characteristics that are not the focus of attention. Most com-
puter graphics rendering activities have been concerned with pho-
torealism, i.e., trying to emulate an image that looks like a high-
quality photograph. This laudable goal is useful and appropriate
in many applications, but not in technical illustration where elu-
cidation of structure and technical information is the preeminent
motivation. This calls for a different kind of abstraction in which
technical communication is central, but art and appearance are still
essential instruments toward this end. Work that has been done
on computer generated technical illustrations has focused on static
images, and has not included all of the techniques used to hand
draw technical illustrations. A paradigm for the display of techni-
cal illustrations in a dynamic environment is presented. This dis-
play environment includes all of the benefits of computer generated
technical illustrations, such as a clearer picture of shape, structure,
and material composition than traditional computer graphics meth-
ods. It also includes the three-dimensional interactive strength of
modern display systems. This is accomplished by using new algo-
rithms for real time drawing of silhouette curves, algorithms which
solve a number of the problems inherent in previous methods. We
incorporate current non-photorealistic lighting methods, and aug-
ment them with new shadowing algorithms based on accepted tech-
niques used by artists and studies carried out in human perception.
This paper, all of the images, and a mpeg video clip are available at
http://www.cs.utah.edu/�bgooch/ITI/.

CR Categories: I.3.0 [Computer Graphics]: General; I.3.6 [Com-
puter Graphics]: Methodology and Techniques.

Keywords: interaction, illustration, non-photorealistic rendering,
silhouettes, lighting models, material properties, hardware render-
ing.

1 Introduction

Currently the process of documenting computer-aided design
projects is undergoing vast changes. Systems are being developed
to automatically create user and repair manuals during the design
phase of a project. In order to document an entire manufactured ob-
ject, six or more static images may be needed to show top, bottom,
left, right, front, and back sides of the object. These images would
need to be redone each time a new part or procedure was docu-
mented. Recently online documentation, as well as online shopping
networks for mechanical parts [11], have been introduced. Instead
of a series of static technical illustrations, more information could
be provided if users could interact with a 3D model of the part being
documented or sold. 3D viewers are for the most part based on tra-
ditional computer graphics lighting and shading models. It has been
shown that traditional hand-drawn technical illustrations do a better
job of describing the shape, structure and material composition of

Figure 1: Left: Phong-shaded model. Right: Cool to warm shading,
including silhouettes and creases as used by technical illustrators.

objects than traditional computer graphics [6]. The central idea of
this paper is to extend the techniques of static technical illustration
to interactive three dimensional display.

In Betty Edwards’ book,Drawing on the right side of the
brain [4], she lists five perceptual skills that an artist needs to have
in order to produce quality drawings: the perception of edges, the
perception of spaces, the perception of relationships, the perception
of light and shadow, and the perception of the whole or gestalt. Our
work attempts to aid in the communication of shape information by
enhancing the displayed model, catering to these perceptual skills
in the user.

We have extended a number of two dimensional techniques into
a three dimensional viewing package. These techniques include
line weight depth cuing, shading and shadowing, light and high-
light motion, and a non-parametric method of representing metal.
The combination of these effects from traditional illustration and
the impact they have on the human visual system have allowed us to
create a system for viewing models in 3D which communicate far
better than traditional rendering algorithms would allow. In Sec-
tion 2 we review previous computer graphics work and conclude
that little has be done to create interactive technical illustrations.
In Section 3 we analyze the conventions for producing static illus-
trations and then discuss the issues involved in creating interactive
illustrations in Section 4. Finally, in Section 5 we present the im-
plementation details both in software and using high-end computer
graphics hardware.

2 Related Work

Computer graphics algorithms that imitate non-photographic tech-
niques such as painting or pen-and-ink are referred to as non-
photorealistic rendering (NPR). An underlying assumption in NPR
is that artistic techniques developed by human artists have intrin-
sic merit based on the evolutionary nature of art. For this reason
techniques are usually borrowed directly from artists rather than
reinvented from first principles.

Non-photorealistic techniques used in computer graphics [3, 5,

Figure 2: Three line conventions suggested by Martin [14]. Left:
single weight used throughout the image. Middle: heavy line
weight used for outer edges, other lines are thinner. Right: vary
line weight to emphasize perspective.

6, 7, 12, 13, 16, 22, 26] vary greatly in their level of abstraction.
Those that produce a loss of detail, like watercolor or pen-and-ink,
produce a high level of abstraction. However, several previous pa-
pers use a low level of abstraction which preserves precise shape
properties and are thus well suited to technical illustration, but lack
interaction.

Although there is a wealth of computer graphics research deal-
ing with the display of three dimensional images, there has been
little exploration into utilizing artistic techniques to aid in the con-
veyance of shape information in an interactive setting. Markosian et
al. [13] developed algorithms for probabilistically calculating only
the silhouettes for polyhedral models in real time. There are also
3D paint programs which allow the user to experiment with non-
photorealistic methods [19, 23] but these methods restrict interac-
tion and require users trained in traditional drawing and painting
techniques. In contrast, our methods incorporate user interaction
with automaticallygenerated 3D technical illustrations based on
geometric models.

3 Static Illustration Principles

Human-drawn technical illustrations are usually stand-alone im-
ages from a single viewpoint presented on a non-stereo medium
such as pen on paper. In this section we discuss the components of
such illustrations that we use in a computer graphics context: line
character, shading and shadowing.

3.1 Lines in Technical Illustration

Previous foundational research [5, 6, 13, 21] established which lines
should be drawn in a computer generated image to maximize the
amount of information conveyed while minimizing the number of
lines drawn. They observed that illustrators use edge lines, consist-
ing of surface boundaries, silhouettes, discontinuities, and creases
to separate individual parts and to suggest important features in the
shape of each object. These static images represented edge lines
with black lines of uniform weight.

There are many line weight conventions which the illustrator
chooses among based on the intent of the image. Martin [14] dis-
cusses three common conventions, shown in Figure 2: a single line
weight used throughout the image, two line weights with the heav-
ier describing the outer edges, and varying the line weight along a
single line emphasizing the perspective of the drawing with heavy
lines in the foreground. One way of achieving this effect in raster
graphics is to vary the line weight dependent upon the direction of
the light source or in an user specified direction, giving a shadowed
effect. However, most illustrators use bold external lines, with thin-
ner interior lines, which aid in the perception of spaces [4].

Figure 3: Left: Illustrators sometimes use the convention of white
interior edge lines to produce a highlight. Image copyright 1995
Macmillan [20]. Used by permission. Right: An image produced
by our system, including shading, silhouettes and white crease
lines.

In almost all illustrations, edge lines are drawn in black. Occa-
sionally, if the illustration incorporates shading, another convention
is used in which some of the interior lines are drawn in white, like
a highlight. Lines drawn in black and white suggest a light source
and denote the models orientation. For example, Figure 3 compares
an illustration produced by an artist and an image from our system
in which white creases are drawn.

3.2 Shading

For shading we use one of three modes. The first two are the diffuse
and metallic shading presented by Gooch et al. [6]. In its simpliest
form the cool to warm shading interpolates from a cool (blue-green)
to a warm (yellow-orange) color based on the surface normal. This
cool-to-warm diffuse shading is shown in Figure 4a. The third
method is an adaptation of this cool to warm shading, simulating
the more dramatic shading effects sometimes used by artists. Fig-
ure 4b illustrates the effect achieved when the reflected light from
the left of the object produces a back-splash of light opposite the di-
rect lighting source. This is accomplished by modifying the model
of [6] with a simple multiplier:

(�j cos �j + (1� �))p ;

where� andp are free parameters which, for this image, are set to
0.76 and 0.78, respectively.

3.3 Shadowing

Illustrators only include shadows when they do not occlude detail in
other parts of the object [14, 15, 20]. In 3D interactive illustrations,
adding only a drop shadow on a ground plane, not the shadows that
an object may cast onto itself, provide helpful visual clues without
occluding important details on the object. It is probably not im-
portant that these shadows be highly accurate to provide valuable
information about three-dimensional structure, especially the spa-
tial layout of a scene [10, 25]. We provide the option to display one
of three types of shadow which will be discussed in Section 5.3, as
well as the option to make the shadow colored, as done by many
artists [18].

(a) Shading by Gooch et al. (b) Shading with splash back

Figure 4: The dark banding in the light splash back model can com-
municate more curvature information and works well on organic
models.

4 Dynamic Illustration Principles

The question remains, how do the 2D illustration rules change for
an interactive 3D technical illustration? Adapting the shading and
line conventions presented earlier is fairly straightforward as long
as the line weight conventions have frame-to-frame coherence. The
more interesting issues depend upon changing the viewer’s position
versus moving the object. Since there are no relevant protocols in
traditional illustration, we may want to base these 3D illustration
conventions on how one would move real objects. This has an ef-
fect on how the light changes with respect to the object, the light
position can be specified as relative to the object or to the viewer.

4.1 Viewer Versus Object Motion

The shading models presented in Section 3.2 are used to full ad-
vantage if the surface color varies completely from cool to warm.
This involves moving the object and not the viewpoint or the lights.
As seen in Figure 5, moving the object while holding the camera
and light positions constant presents more shape information and
surface detail. For this reason our interface rotates the object rather
than the viewer, leaving the background, light, and viewer in place.

When multiple objects appear in a scene, illustrators often use
different shading across each object, inferring that each object has
its own light, which does not affect other objects in the environ-
ment, similar to the virtual lights described by Walter et al. [24].
For example, two objects in a scene may be lit differently to draw
attention to different attributes of each object. If this were accom-
plished by adding two lights to the environment, the multiple high-
lights would be confusing.

4.2 Material Properties

Most material properties are nearly constant as the view direction or
lighting changes. However, the metal shading presented by Gooch
et al. is the replication of the anisotropic reflection [8] due to the
surface of the object and the reflection of the environment. When a
real metal part is rotated in one’s hand, the banding does not stick to

Figure 5: Left: Model with cool to warm shading with lights po-
sitioned up and to the right. Middle: After the camera position is
moved to view the side of the model. Right: After moving the ob-
ject instead of the camera, allowing the surface to vary completely
from cool to warm.

Figure 6: Metal-shaded object with shadow and ground plane.
White creases and black silhouette lines are also drawn.

the object, but remains constant since the environment is not chang-
ing. However, in a non-photorealistic interactive environment it
may be too jarring to have the metal shading change abruptly. Us-
ing a metal texture would be more appropriate and a metal texture in
an interactive environment would still properly convey the material
property.

5 Implementation

As outlined in the previous two sections, our system needs the capa-
bility to interactively display a custom shading model, silhouettes,
and interior edges. In addition, this interaction must be possible for
complex geometric models. In this section we describe a variety
of techniques for achieving these goals, and describe the tradeoffs
involved in choosing a particular technique.

5.1 Displaying Important Edges and Silhouettes

To draw silhouettes, we have implemented several methods of ex-
tracting and displaying edge lines from polyhedral models, which
will be discussed in Section 5.1.1 and 5.1.2. They can be roughly
broken down into two categories. The first assumes no prior knowl-
edge or preprocessing of the model and heavily leverages commod-
ity graphics hardware. The second set of methods use preprocess-
ing of the model and are purely software algorithms. Both hardware

(a) (b)

Figure 7: Adding the silhouettes to the environment map instead
of calculating silhouettes from the geometry produces interesting
artistic effects.

and software algorithms clearly have a place. The set of hardware
methods are useful because of ease of implementation. The soft-
ware methods are advantageous due to their flexibility and lower
computational complexity. All of the software methods assume that
the models are either manifold or manifold with boundary.

We can also extract boundary curves, edges adjacent to only a
single face, and creases, that is, the edge between two front facing
polygons whose dihedral angle is above some threshold. The user is
provided the option to draw these edges, dependent upon the model
and intent of the image. The computation and drawing of creases is
discussed in Section 5.1.3.

5.1.1 Hardware Methods

Using multi-pass rendering [1] there are several ways to extract
silhouettes. The algorithm presented in the SIGGRAPH 1998
OpenGL Course doesn’t capture internal silhouette edges and re-
quires four passes of rendering. We recently found out that there
is concurrent work similar in spirit to our hardware methods [2].
Below we provide algorithms which require two or three rendering
passes and capture internal silhouettes.

In a polyhedral model a silhouette is an edge that is connected
to both a front facing and a back facing polygon. The following is
pseudo code for the basic algorithm:

draw shaded front faces
draw front faces in line mode:

setting only stencil
draw back faces in line mode:

setting color if stencil was set
decrementing stencil if drawn

To draw lines over polygons, the PolygonOffset extension (or
PolygonOffset function in GL 1.1) [17] needs to be used. This func-
tion effectively modifies the depth values of the first pass based on

Figure 8: The arc in a Gauss map seen in 2D. The two bold line
segments are faces that share a vertex. The orientations of their
normals can be represented as points on the circle. The arc between
those two points represents all orientations swept out between the
two normals. In 3D the same reasoning applies, and the arc is an
arbitrary segment on a great circle.

the slope of the triangles and a bias factor. This technique can be
used to create something similar to a silhouette, effectively a halo.
The depth values are pushed forward instead of back to allow lines
to be rasterized over faces. Then wide lines are drawn. Where there
are large discontinuities in depth (silhouettes and boundaries), only
part of the line is drawn. This method requires only two passes in-
stead of the three listed above, but can be fairly sensitive to the pa-
rameters of the polygon offset function. Using OpenGL hardware
makes the implementation simple, however, it limits the thickness
of the edge lines.

Another hardware technique is to add the edge lines to a shad-
ing environment map as a preprocess. However, as shown in Fig-
ure 7(a), the lines lack crispness, and if the model varies greatly
in curvature, there may be large black regions. In order to include
silhouettes on the feet of the cow in Figure 7(b), we have to set the
threshold low enough to draw lines in these high curvature regions.
This causes regions which have relatively low curvature to be filled
in with black. Although this effect produces some interesting, artis-
tic results, it may be inappropriate for technical illustration.

5.1.2 Software Methods

A straightforward technique for drawing silhouettes is to explicitly
test every edge in the model. We compute an edge structure based
on the face normals of the model, which are also used for back face
culling as in Zhang et al. [27]. An edge is a silhouette edge if and
only if:

(~n1 � (~v � ~e)) (~n2 � (~v � ~e)) � 0;

where~v is a vertex on the edge, and~ni are the outward facing sur-
face normal vectors of the two faces sharing the edge. This situation
only occurs when one face is front facing and the other is back fac-
ing. While this computation is simple, it can potentially become
a bottleneck with large models. Since we have to shade (or prime
the z buffer for hidden surface elimination) this computation can be
done in parallel while the model is being rendered.

We use a more complex preprocess and search algorithm when
classifying edges becomes a bottleneck. This algorithm is similar in
spirit to Zhang et al. [27], but requires looking at arcs on the Gauss
map instead of points. The Gauss map of an edge on a polyhedral
model is a great arc on the sphere of orientations (Figure 8). Under
orthographic projection, a plane through the origin in this sphere
defines the view. All of the faces on one side of the plane are front
facing, and on the other side they are back facing. If the “arc” cor-
responding to an edge is intersected by this plane, it is a silhouette

Figure 9: All creases are drawn in white (Left), and then all of the
silhouette lines are drawn in black (Right), overlapping the creases.

edge. To search for such edge/plane intersections, we store the arcs
in a hierarchy on the sphere to quickly cull edges that can not be
silhouettes. We have implemented a decomposition of the sphere
starting with a platonic solid (octahedron or icosahedron) and all
successive levels are four to one splits of spherical triangles. This
makes silhouette extraction logarithmic in the number of edges for
smooth models where the arcs tend to be short. An arc is stored at
the lowest possible level of the hierarchy. One problem with this
hierarchy is that the edges of the spherical triangles on the sphere
interfere with the arcs and limit how far they can be pushed down
the hierarchy. The probability of being stored in a leaf node that
can contain an arc of a given length decreases as the size of the
triangles shrink because the boundaries of these spherical triangles
become denser as you recurse. An ad hoc solution to this problem is
to use multiple hierarchies, whose spherical triangles are different,
and store an arc in the hierarchy with the spherical triangle with the
smallest area that contains it. A more attractive alternative would
be to use “bins” on the sphere that overlap and/or making data de-
pendent hierarchies.

Under perspective viewing, the region you have to check grows,
based on planes containing the object and intersecting the eye.
Building a spatial hierarchy over the model as in [27] would mini-
mize this effect. One advantage of any software approach is that it
makes it easier to implement different styles of line drawing.

5.1.3 Line Styles

As discussed in Section 3.1, line width can appear to change by
either shading the lines based on the surface orientation, or by using
OpenGL 1D texture mapping hardware to shade lines. Using a 1D
texture map, there can be a relationship between the surface and a
distance to a light or to a plane in the scene.

Fat boundary lines can be drawn with either the software or hard-
ware methods. These lines are drawn after the rest of the model has
been drawn (shading, creases, silhouettes). While the earlier phases
are drawn, they set a stencil bit, indicating that the given pixel has
been draw for this frame. Finally, the boundary silhouettes are
drawn over again with wider lines. In hardware this requires a full
traversal of the front or back faces, while using software extraction
algorithms only require a traversal of the silhouette edges which
have been previously computed. All of these algorithms are more
efficient than the methods mentioned in the OpenGL course [1] be-
cause it required four rendering passes while these algorithms re-
quire only one extra pass, and that pass may only be of the silhou-

Model Faces Edges Naive Gauss Num Sil
S Crank 24999 35842 .027 .0198 3873
L Crank 169999 254941 .165 .096 12469
Sphere 78804 117611 .082 .016 273

Table 1: Model information and timings, in seconds on 195Mhz
R10k fornaiveandhierarchical silhouette extractionmethods un-
der an orthographic view.

Level No Overlap Overlap
0 12294 3138
1 4844 2221
2 5978 3569
3 4666 5943
4 9704 22615

Table 2: Hierarchy method showing the number of edges stored at
each level on a Gaussian sphere for 25k-polygon crank shaft model
for non-overlapping and overlapping bins.

ette edges.
Creases are extracted independent of the view and are drawn as

white lines. After adding shading and silhouettes, only the creases
that are connected to two front facing faces, and are not already
silhouettes, are visible. To emulate the look of illustrations the
creases need to be drawn with the same thickness as the silhouettes,
as shown in Figure 9.

One problem when rendering rasterized wide lines is the “gaps”
where the lines do not overlap. A solution to this is to render the end
of the lines with large points, effectively filling in the gaps. There is
much less of a performance loss with the software extraction meth-
ods, since they only need to redraw the actual silhouettes, not the
entire model.

5.1.4 Discussion

Silhouette finding using specialized graphics hardware like
OpenGL is simple to implement and not as dependent on “clean”
models. However it is less flexible and does not allow the user to
change line weight. The software methods we discussed are more
complex and depend on “clean” models which must have shared
vertices, otherwise internal boundaries can not be checked for sil-
houettes. However the software methods provide more flexibility
and, potentially, better performance.

Table 1 presents the information of two extreme cases. These
cases are based on orthographic views. Under perspective projec-
tion some form of bounding volume hierarchy would have to be
employed [27] to increase the efficiency. Both the simplified and
the finely tessellated versions of the crank shaft model have many
sharp features, while the sphere has very small dihedral angles.

The current implementation of the hierarchy method uses an
icosahedron with 4 levels of subdivision, i.e., 1280 faces. On the
sphere this method is extremely efficient. When using overlapping
bins, all of the edges are stored in the leaf nodes. When using non-
overlapping bins only 84% of the edges are in the leaf nodes and
2132 are on level 0. Table 2 shows the number of edges stored
at every level of the hierarchy for non-overlapping and overlapping
hierarchies. The overlapping method did a much better job, even
on the simplified crank model.

Parallelizing the silhouette extraction with the rest of the ren-
dering can cause the extraction time to be negligible. A separate
thread can extract silhouettes while the polygons are being rendered
to shade the model or initialize the Z buffer. This parallelization

(a) Environment map used to
generate Figure 4(a).

(b) Environment map used to
generate Figure 4(b).

Figure 10: Shaded sphere images used for environment maps.

takes only three-thousands of a second for the sphere and five one-
hundredths on the large crank shaft model. If you are using soft-
ware visibility algorithms this technique would probably prove to
be more effective.

5.2 Shading

There are several ways to apply NPR shading models using hard-
ware [6, 1]. We chose to use environment maps because they pro-
vide the most flexibility in the shading model. This effectively al-
lows us to evaluate a lighting model at every normal/reflection di-
rection in the visible hemisphere in eye-space.

We evaluated the whole shading equation in a Phong environ-
ment map. In using an environment map as shown in Figure 10,
all normals in eye-space are mapped to a 2D texture. This shading
only is valid in eye-space, but it is possible to extend these to view-
independent environment maps [9]. The cool-to-warm and light
“splashback” terms mentioned in Section 3.2 are a function of the
light direction and could be implemented with this representation.
However, the Phong term would have to be computed for each view
even though a single light source could be implemented as a single
1D texture map instead of a full 2D texture map.

5.2.1 Metal Shading

The metal shading technique we use assumes a principle direction
of curvature and striping occurs in an orthogonal direction. We first
compute a table of random intensities where sample is:b+ (r � a),
where the baseb is -0.1,r is a random number in [0,1] anda is 1.4.
This causes the distribution be to biased towards white and black.
We then filter each element in the table with each of its neighbors
using a 1-5-1 weighting scheme and clamp it to be in the range of
[0,1]. We make it periodic so there is some coherence which will
remain smooth as it wraps around the model.

The table is then resampled into a 1D texture map. The texture
map is used as a cosine distribution because it is indexed via a dot
product. The resampling makes sure the bands are uniformly dis-
tributed on a cylinder.

We then render the model with this texture map. The texture
matrix computes the dot product with a fixed axis orthogonal to the
principle curvature direction, and remap the value into [0,1]. This
technique can be scaled in order to change the spacing of the stripes.

By itself, this texture does not look convincing, therefore we
add Phong highlights computed by lighting a texture map in eye
space with several Phong light sources oriented in the directions of
a icosahedron’s vertices. A fairly large specular power, empirically

Light Source

Object

Receiving
 Plane

Figure 11: Drawing the shadow of a sphere with a spherical light
source directly onto a ground plane directly below it, traditionally
each sample will render an ellipse. To get an accurate representa-
tion of the penumbra, this surface of the spherical light source needs
to be sampled in 2 dimensions. With our method, each shadow is a
concentric circle, requiring less samples to get the same results.

around 30-50, seemed to work best with a specular coefficient of
about 0.3.

5.3 Shadowing

We draw shadows in one of three modes: a single hard shadow, a
shadow with a hard umbra and a hard penumbra, and a soft shadow,
as shown in Figure 12. Both of the later two modes approximate
a spherical light source at a fixed distance from the center of the
model in the direction of the light source used for shading.

The easiest and fastest method to draw simple shadows is to ex-
plicitly draw an umbra and penumbra. We draw two hard shadows,
one from the center of the spherical light source back in the direc-
tion used for shading, and the other forward.

Soft shadows are problematic to do both accurately and effi-
ciently, so we use an approximation to gain speed. Instead of us-
ing the conventional method to simulate an area light source, i.e.,
sampling the area light source and accumulating the point approx-
imations, we project multiple shadows from the center of the ap-
proximation sampling a 1D direction, the ground plane’s normal.
This is done by projecting the same shadow onto a stack of planes,
then translating the shadows to the ground plane and accumulating
them, as shown in Figure 11.

One thing to note is that with this method, each “sample” is a
perspective remapping of the first, intersected on a different plane.
We could render a single shadow, copy it into texture memory and
then remap it correctly to accumulate the other samples. This is
much faster than projecting multiple jittered samples since there is
a lower depth complexity for rasterization and a much lower burden
on the transformation if the texture mapping method were used.

This method assumes that the silhouette from different points on
the spherical light source is the same, i.e., the projection is the same.
The planes coming out of the receiver will not correctly model con-
tact. However, you can render only the lower planes if contact oc-
curs resulting in a less realistic shadow, but one without distracting
spill-over.

(a) Hard penumbra and hard umbra.

(b) Single hard, colored shadow.

(c) Colored soft shadow.

Figure 12: Shadows provide valuable information about three-
dimensional structure, especially the spatial layout of the scene.

6 Future Work and Conclusion

We have reported on an approach that produces interactive tech-
nical illustrations. This work incorporates established principles
from traditional art in a framework of powerful geometric modeling
and rendering. The goal is to produce non-photorealisitic images
for technical illustration, as well develop the algorithms which ex-
ploit aspects of the standard graphics pipeline to achieve interactive
speeds. Although this system is formed by empirical data on human
perception, a number of parameter settings are available to the user
based on their aesthetic preferences. Our approach incorporates:
parameters for cool and warm color choices, new interactive silhou-
ette algorithms, various shadow schemes, line choices for internal
features versus external outlines, and rendering methods exploiting
texture maps. Together these produce technically informative and
aesthetically pleasing interactive illustrations.

This paper addresses a widely occurring need, namely, gener-
ating attractive and informative technical illustrations for modern
documentation schemes, which are likely to be hierarchical and
web-based for individual exploration. It represents an advance in
the relatively under-developed area of computer graphics involv-
ing non-photorealistic rendering, where the needs are extensive and
the available methods are few. Inspired by the work of Markosian
et al.’s real-time probabilistic silhouette finding methods, we have
taken the next step to create a system which incorporates fast de-
terministic silhouette and crease finding algorithms, with artistic
shading and shadowing.

These interactive illustrations emphasize the structure and detail
of mechanical models. We believe that in the future, this approach
can also be tuned for many other important domains such as medi-
cal illustration. We would also like to further explore changing line
width along a single silhouette, calculating soft shadows from sil-
houettes, as well as creating new algorithms aimed at controlling
silhouette frame-to-frame coherence.

Acknowledgments

Thanks to Richard Coffey, Gordon Kindlmann, the members of the
University of Utah Computer Graphics groups for help in the ini-
tial stages of the paper, and to Ramesh Raskar and Michael Cohen
for discussing their work in progress with us. This work was sup-
ported in part by DARPA (F33615-96-C-5621) and the NSF Sci-
ence and Technology Center for Computer Graphics and Scientific
Visualization (ASC-89-20219). All opinions, findings, conclusions
or recommendations expressed in this document are those of the
author and do not necessarily reflect the views of the sponsoring
agencies.

References
[1] David Blythe, Brad Grantham, Scott Nelson, and Tom McReynolds.

Advanced Graphics Programming Techniques Using OpenGL.
http://www.sgi.com/Technology/OpenGL/advancedsig98.html, 1998.

[2] Michael Cohen and Ramesh Raskar. Personal Communication. 1998.

[3] Cassidy J. Curtis, Sean E. Anderson, Kurt W. Fleischer, and David H. Salesin.
Computer-Generated Watercolor. InSIGGRAPH 97 Conference Proceedings,
August 1997.

[4] Betty Edwards. Drawing on the Right Side of the Brain. Jeremy P.
Tarcher/Putnam, 1989.

[5] Gershon Elber and Elaine Cohen. Hidden Curve Removal for Free-Form Sur-
faces. InSIGGRAPH 90 Conference Proceedings, August 1990.

[6] Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. A Non-
photorealistic Lighting Model for Automatic Technical Illustration. InComputer
Graphics, July 1998. ACM Siggraph ’98 Conference Proceedings.

[7] Paul Haeberli. Paint By Numbers: Abstract Image Representation. InSIG-
GRAPH 90 Conference Proceedings, August 1990.

[8] Wolfgang Heidrich. A model for anisotropic reflections in open gl. InSIG-
GRAPH 98 Conference Abstracts and Applications, page 267, July 1998.

[9] Wolfgang Heidrich and Hans-Peter Seidel. View-independent environment
maps. InEurographics/SIGGRAPH Workshop on Graphics Hardware, pages
39–45, September 1998.

[10] D. Kersten, D. C. Knill, P. Mamassian, and I. Bulthoff. Illusory motion from
shadows.IEEE Computer Graphics and Applications, 379(31), 1996.

[11] ViewPoint Data Labs.LiveArt 98. Orem, UT, 1998.

[12] Peter Litwinowicz. Processing Images and Video for an Impressionistic Effect.
In SIGGRAPH 97 Conference Proceedings, August 1997.

[13] L. Markosian, M. Kowalski, S. Trychin, and J. Hughes. Real-Time Non-
Photorealistic Rendering. InSIGGRAPH 97 Conference Proceedings, August
1997.

[14] Judy Martin. Technical Illustration: Materials, Methods, and Techniques, vol-
ume 1. Macdonald and Co Publishers, 1989.

[15] Scott McCloud.Understanding Comics. Tundra Publishing Ltd., Northhampton,
MA, 1993.

[16] Barbara J. Meier. Painterly Rendering for Animation. InSIGGRAPH 96 Con-
ference Proceedings, August 1996.

[17] Jackie Neider, Tom Davis, and Mason Woo.OpenGL Programming Guide.
Addison-Wesley Publishing Company, 1993.

[18] Jose M. Parramon.The Book of Color. Watson-Guptill Publications, New York,
NY, 1993.

[19] PartNet. http://www.partNet.com/. 423 Wakara Way Suite 216 Salt Lake City,
Utah 84108, 1998.

[20] Tom Ruppel, editor.The Way Science Works, volume 1. MacMillan, 1995.

[21] Takafumi Saito and Tokiichiro Takahashi. Comprehensible Rendering of 3D
Shapes. InSIGGRAPH 90 Conference Proceedings, August 1990.

[22] Mike Salisbury, Michael T. Wong, John F. Hughes, and David H. Salesin. Ori-
entable Textures for Image-Based Pen-and-Ink Illustration. InSIGGRAPH 97
Conference Proceedings, August 1997.

[23] Daniel Teece. 3d painting fornon-photorealisitic rendering. InSIGGRAPH 98
Conference Abstracts and Applications, page 248, July 1998.

[24] Bruce Walter, Gun Alppay, Eric P. F. Lafortune, Sebastian Fernandez, and Don-
ald P. Greenberg. Fitting Virtual Lights for Non-Diffuse Walkthroughs. InSIG-
GRAPH 97 Conference Proceedings, pages 45–48, August 1997.

[25] Leonard R. Wanger, James A. Ferwerda, and Donald P. Greenberg. Perceiving
spatial relationships in computer-generated images.IEEE Computer Graphics
and Applications, 12(3):44–58, May 1992.

[26] Georges Winkenbach and David H. Salesin. Computer Generated Pen-and-Ink
Illustration. InSIGGRAPH 94 Conference Proceedings, August 1994.

[27] H. Zhang and K. Hoff III. Fast backface culling using normal masks. InProc.
1997 Symposium on Interactive 3D Graphics, pages 103–106, April 1997.

