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Course Syllabus
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Modeling

• How do we ...
� Represent 3D objects in a computer?

� Construct such representations
quickly and/or automatically with a computer?

� Manipulate 3D objects with a computer?

Different methods for different object representations
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3D Objects

How can this object be represented in a computer?

3D Objects

This one?
H&B Figure 10.46
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3D Objects

How about this one?

Stanford Graphics Laboratory

3D Objects

This one?

Lorensen
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3D Objects

This one?
H&B Figure 9.9

3D Objects

This one?
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Representations of Geometry

• 3D Representations provide the foundations for
� Computer Graphics, Computer-Aided Geometric

Design, Visualization, Robotics

• They are languages for describing geometry
Semantics     Syntax
values data structures
operations algorithms

• Data structures determine algorithms!

3D Object Representations

• Raw data
� Point cloud
� Range image
� Polygon soup

• Surfaces
� Mesh
� Subdivision
	 Parametric

 Implicit

• Solids
� Voxels
� BSP tree

 CSG
� Sweep

• High-level structures
� Scene graph
� Skeleton
� Application specific
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Point Cloud

• Unstructured set of 3D point samples
� Acquired from range finder, computer vision, etc

Hoppe

Hoppe

Range Image

• Set of 3D points mapping to pixels of depth image
� Acquired from range scanner

Brian Curless
SIGGRAPH 99 
Course #4 Notes

Range Image Tesselation Range Surface
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Polygon Soup

• Unstructured set of polygons
� Created with interactive modeling systems?

Larson

3D Object Representations

• Raw data
� Point cloud
� Range image
� Polygon soup

• Surfaces
� Mesh
� Subdivision
� Parametric
� Implicit

• Solids
� Voxels
� BSP tree
� CSG
� Sweep

• High-level structures
 Scene graph
! Skeleton
" Application specific
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Mesh

• Connected set of polygons (usually triangles)
# May not be closed

Stanford Graphics Laboratory

Subdivision Surface

• Coarse mesh & subdivision rule
$ Define smooth surface as limit of

sequence of refinements

Zorin & Schroeder
SIGGRAPH 99 

Course Notes
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Parametric Surface

• Tensor product spline patchs
% Careful constraints to maintain continuity

FvDFH Figure 11.44

Implicit Surface

• Points satisfying: F(x,y,z) = 0

Polygonal Model Implicit Model

Bill Lorensen
SIGGRAPH 99
Course #4 Notes
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3D Object Representations

• Raw data
& Point cloud
' Range image
( Polygon soup

• Surfaces
) Mesh
* Subdivision
+ Parametric
, Implicit

• Solids
- Voxels
. BSP tree
/ CSG
0 Sweep

• High-level structures
1 Scene graph
2 Skeleton
3 Application specific

Voxels

• Uniform grid of volumetric samples
4 Acquired from CAT, MRI, etc.

FvDFH Figure 12.20

Stanford Graphics Laboratory
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BSP Tree

• Binary space partition with solid cells labeled
5 Constructed from polygonal representations
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Binary Spatial Partition

Binary Tree

Naylor

CSG

• Hierarchy of boolean set operations (union,
difference, intersect) applied to simple shapes

FvDFH Figure 12.27 H&B Figure 9.9
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Sweep

• Solid swept by curve along trajectory

Removal Path Sweep Model

Bill Lorensen
SIGGRAPH 99
Course #4 Notes

3D Object Representations

• Raw data
6 Point cloud
7 Range image
8 Polygon soup

• Surfaces
9 Mesh
: Subdivision
; Parametric
< Implicit

• Solids
= Voxels
> BSP tree
? CSG
@ Sweep

• High-level structures
A Scene graph
B Skeleton
C Application specific
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Scene Graph

• Union of objects at leaf nodes

Bell Laboratories

avalon.viewpoint.com

Skeleton

• Graph of curves with radii

Stanford Graphics Laboratory

SGI
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Application Specific

Apo A-1
(Theoretical Biophysics Group,

University of Illinois at Urbana-Champaign)

Architectural Floorplan
(CS Building, Princeton University)

Taxonomy of 3D Representations

Discrete Continuous

Combinatorial Functional

Parametric ImplicitTopological Set Membership 

Voxels

Mesh
Subdivision

BSP Tree
Cell Complex

Bezier
B-Spline

Algebraic

Naylor
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Equivalence of Representations

• Thesis:
D Each fundamental representation has enough

expressive power to model the shape
of any geometric object

E It is possible to perform all geometric operations with
any fundamental representation!

• Analogous to Turing-Equivalence:
F All computers today are turing-equivalent,

but we still have many different processors

Computational Differences

• Efficiency
G Combinatorial complexity  (e.g. O( n log n )  )
H Space/time trade-offs   (e.g. z-buffer)
I Numerical accuracy/stability  (degree of polynomial)

• Simplicity
J Ease of acquisition
K Hardware acceleration
L Software creation and maintenance

• Usability
M Designer interface vs. computational engine
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Complexity vs. Verbosity Tradeoff

Verbosity / Inaccuracy

Complexity / Accuracy

pixels/ voxels

piecewise linear polyhedra

low degree piecewise non-linear

single general functions

Summary

• Raw data
N Point cloud
O Range image
P Polygon soup

• Surfaces
Q Mesh
R Subdivision
S Parametric
T Implicit

• Solids
U Voxels
V BSP tree
W CSG
X Sweep

• High-level structures
Y Scene graph
Z Skeleton
[ Application specific


