|

Eﬁ‘%

3D Rendering

Thomas Funkhouser
Princeton University
CO0S 426, Fall 2000

-

Course Syllabus

l. Image processing
Il. Rendering
I1l. Modeling

V. Animation

Image Processing
(Rusty Coleman, C$426, Fall99)

Rendering
(Michael Bostock, C426, Fall99)

Animation
(Angel, Plate 1)

-

Where Are We Now?

%
L A

g
<
i

l. Image processing
Il. Rendering
l1l. Modeling

V. Animation

Image Processing
(Rusty Coleman, C$426, Fall99)

P
SOy
FACKAA
AVAN| N

VAR
vl f
P

AVAVMV'A"
AYdl

T3

Modelin
J AN

(Dennis Zorin, CalTech) f’e{g&%‘

Rendering
(Michael Bostock, C426, Fall99)

Animation
(Angel, Plate 1)

~
Rendering

®

s
<
i

——-
Rendering

Geometric
Primitives

» Generate an image from geometric primitives

Raster
Image

4)
3D Rendering Example ga

What issues must be addressed by a
3D rendering system?

4)
Overview ga

3D scene representation

3D viewer representation

Visible surface determination

Lighting simulation

-
Overview

» 3D scene representation

« 3D viewer representation
» Visible surface determination

 Lighting simulation

How is the 3D scene
described in a computer?

-

Eﬁ‘%
ok

3D Scene Representation

» Scene is usually approximated by 3D primitives
o Point
o Line segment
o Polygon
o Polyhedron
o Curved surface
o Solid object
o eftc.

~
3D Point

g
<
i

3%
9

» Specifies a location
o Represented by three coordinates
o Infinitely small

typedef struct {
Coordinate x;
Coordinateyy; °
Coordinate z;

J Point (x.y.,2)

-

g
<
i

3%
g

3D Vector

» Specifies a direction and a magnitude
o Represented by three coordinates
o Magnitude ||V|| = sqrt(dxdx + dydy + dzdz)
o Has no location

typedef struct {
Coordinate dx;
Coordinate dy;
Coordinate dz;
} Vector;

(dx,,dy,,dzy)

(dx,,dy, ,dz,)

» Dot product of two 3D vectors
o V;-V, = dx,dx, + dy,dy, + dz,dz,
o V-V = [Vl [V2 || cos(©)

-

3D Line

E B

mﬁ
as]

o

* Line segment with both endpoints at infinity
o Parametric representation:
»P=P;+tV, (-0<t<o)

typedef struct {
Point P1;
Vector V;
} Ling;
V
Pl
r
3D Ray

* Line segment with one endpoint at infinity
o Parametric representation:
»P=P,+tV, (0<=t<m)
typedef struct {

Point P1;
Vector V;

} Ray;

~
3D Line Segment

g
<
i

3%
9

» Specifies a linear combination of two points
o Parametric representation:
typedef struct {
Point P1;
Point P2; /P
} Segment; 2
P,
-
3D Plane ge

» Specifies a linear combination of three points
o Implicit representation:

»P-N+d=0,or N = (a,b,c)
»ax+by+cz+d=0
typedef struct { ‘
Vector N; P2. .P3
Distance d;
} Plang;
P
d

Origin

-

g
<
i

3%
9

I

3D Polygon

» Area “inside” a sequence of coplanar points
o Triangle

Quadrilateral
Convex
Star-shaped
Concave

Self-intersecting
Holes

[e]

[e]

[e]

[e]

[e]

[e]

typedef struct {
Point * points;
int npoints;

} Polygon;

Points are in counter-clockwise order

-

®

B2
<
B

3D Sphere

9

« All points at distance “r" from point “(c,, c,, c,)"
o Implicit representation:
»(X-C)2+ (Y -C)2+(z-C)2=r2
o Parametric representation:
» X =r cos(¢) cos(©)
» Yy =r cos(@) sin(O)
»Z =rsin(g)

typedef struct {
Point center;
Distance radius;

} Sphere;

-
3D Geometric Primitives

Eﬁ‘%
ok

* More detail on 3D modeling later in course
o Point
o Line segment
o Polygon
o Polyhedron
o Curved surface
o Solid object
o eftc.

© SOFTIMAGE

H&B Figure 10.46 /

-
Overview

« 3D scene representation
» 3D viewer representation
* Visible surface determination

 Lighting simulation

How is the viewing device
described in a computer?

-
Camera Models

\

* The most common model is pin-hole camera

o All captured light rays arrive along paths toward focal
point without lens distortion (everything is in focus)

o Sensor response proportional to radiance

e Other models consider ...
o Depth of field '
o Motion blur E)/e gsition
o Lens distortion (toéal‘(p%\(‘)int)

-

g
<
i

3%
9

Camera Parameters

Position
o Eye position (px, py, pz)
Orientation

o View direction (dx, dy, dz)
o Up direction (ux, uy, uz) View

Plane

Aperature

o Field of view (xfov, yfov) “Look at”

1> Point

Film plane
o “Look at” point
o View plane normal

L~ View direction

Eye
Position

10

4 N
Demo
Back
Right
View Frustum
J
4 N
Overview

« 3D scene representation
« 3D viewer representation
» Visible surface determination

 Lighting simulation

How can the front-most surface
be found with an algorithm?

-
Visible Surface Determination

» The color of each pixel on the view plane
depends on the radiance emanating from
visible surfaces

Rays
through :
view plane

Simplest method
is ray casting

-

g
<
i

3%
9

Ray Casting

» For each sample ...
o Construct ray from eye position through view plane
o Find first surface intersected by ray through pixel
o Compute color of sample based on surface radiance

4 N
Ray Casting
* For each sample ...
o Construct ray from eye position through view plane
o Find first surface intersected by ray through pixel
o Compute color of sample based on surface radiance
t o p|ofo o
[o o o [o o o To—o0°
J
4 N
Visible Surface Determination
* For each sample ...
o Construct ray from eye position through view plane
o Find first surface intersected by ray through pixel
o Compute color of sample based on surface radiance
o] (-] o [\0_—}
[o o o [o o o To—o0°
More efficient algorithms
utilize spatial coherence!
J

13

-
Rendering Algorithms

Eﬁ‘%
ok

» Rendering is a sampling and reconstruction
problem!
R AR
J
4 N
Overview

« 3D scene representation
« 3D viewer representation
» Visible surface determination

» Lighting simulation

How do we compute the
radiance for each sample ray?

-

Lighting Simulation

2
Lo

 Lighting parameters

Lighting Simulation

o Light source emission Light
o Surface reflectance Source
o Atmospheric attenuation -~
o Camera response -
Surface
Camera)
4 N

2
Lo

 Direct illumination
o Ray casting
o Polygon shading

e Global illumination
o Ray tracing
o Monte Carlo methods Surface
o Radiosity methods

More on these
methods later!

Light
Source

15

>
Summary

» Major issues in 3D rendering
3D scene representation

3D viewer representation
Visible surface determination
Lighting simulation

[e]

[e]

[e]

[e]

« Concluding note '
o Accurate physical simulation /) U
is complex and intractable
» Rendering algorithms apply
many approximations to simplify
representations and computations

~
Next Week @

g8
S

* Ray intersections
 Light and reflectance models

e Indirect illumination

Render Boy
(R Kalnins & H. Oki,
Assignment 5, CS426, Fall98,
Princeton University)

For assignment #2, you will write a ray tracer!

16

