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3D Rendering

» The color of each pixel on the view plane
depends on the radiance emanating from
visible surfaces

Rays
through | i
view plane

Simplest method
is ray casting
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Ray Casting
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« Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)

Image image = new I mage(width, height);
for (inti=0; i <width; i++) {
for (intj =0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = Findl nter section(ray, scene);
image[i][j] = GetColor(hit);
}
}

return image;
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Ray-Scene Intersection
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* Find intersection with front-most primitive in group

Intersection FindIntersection(Ray ray, Scene scene)

{
min_t = infinity
min_primitive = NULL @

For each primitivein scene {
t = Intersect(ray, primitive);
if (t <min_t) then

min_primitive = primitive
min_t=t

}

) ®
return Intersection(min_t, min_primitive)
}




-

Ray-Scene Intersection
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* Intersections with geometric primitives
o Sphere
o Triangle
o Groups of primitives (scene)

» Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions
» Uniform grids
» Octrees
» BSP trees
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Bounding Volumes
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» Check for intersection with simple shape first

o If ray doesn’t intersect bounding volume,
then it doesn’t intersect its contents
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Bounding Volume Hierarchies |
 Build hierarchy of bounding volumes

o Bounding volume of interior node contains all children
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Bounding Volume Hierarchies

» Use hierarchy to accelerate ray intersections
o Intersect node contents only if hit bounding volume
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» Sort hits & detect early termination

FindIntersection(Ray ray, Node node)
{

/I Find intersections with child node bounding volumes
/I Sort intersections front to back

/I Process intersections (checking for early termination)
min_t = infinity;
for each intersected child i {
if (min_t <bv_t[i]) break;
shape_t = Findintersection(ray, child);
if (shape_t<min_t) { min_t = shape t;}
}

return min_t;
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* Intersections with geometric primitives
o Sphere
o Triangle
o Groups of primitives (scene)

» Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions
» Uniform grids
» Octrees
» BSP trees
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Uniform Grid
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» Construct uniform grid over scene
o Index primitives according to overlaps with grid cells
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Uniform Grid
 Trace rays through grid cells
o Fast

o Incremental

Only check primitives
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in intersected grid cells
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Uniform Grid
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» Potential problem:
o How choose suitable grid resolution?

Ray-Scene Intersection
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* Intersections with geometric primitives
o Sphere
o Triangle
o Groups of primitives (scene)

» Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions
» Uniform grids
» Octrees
» BSP trees
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Octree
» Construct adaptive grid over scene
o Recursively subdivide box-shaped cells into 8 octants
o Index primitives by overlaps with cells
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Generally fewer cells D y =
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Octree

5]
R '\a%

g
<
gé

o Fewer cells
o More complex neighbor finding

« Trace rays through neighbor cells

&

Trade-off fewer cells for
more expensive traversal
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Ray-Scene Intersection
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* Intersections with geometric primitives
o Sphere
o Triangle
o Groups of primitives (scene)

» Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions
» Uniform grids
» Octrees
» BSP trees
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Binary Space Partition (BSP) Tree

* Recursively partition space by planes
o Every cell is a convex polyhedron
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Binary Space Partition (BSP) Tree

« Simple recursive algorithms
o Example: point finding
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Binary Space Partition (BSP) Tree

» Trace rays by recursion on tree
o BSP construction enables simple front-to-back traversal
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Binary Space Partition (BSP) Tree

RayTreelntersect(Ray ray, Node node, double min, double max)

{
if (Nodeis aleaf)

return intersection of closest primitive in cell, or NULL if none

else

dist = distance of the ray point to split plane of node
near_child = child of node that contains the origin of Ray
far_child = other child of node
if the interval to look is on near side

return Ray Treel ntersect(ray, near_child, min, max)
elseif the interval to look ison far side

return Ray Treel ntersect(ray, far_child, min, max)
elseif the interval to look is on both side

if (RayTreelntersect(ray, near_child, min, dist)) return ...;

else return RayTreelntersect(ray, far_child, dist, max)
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Other Accelerations

» Screen space coherence
o Check last hit first
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o Beam tracing RN A R R o

o Pencil tracing ST o e

o Cone tracing o o o o o o
« Memory coherence © o o o o o o oo

o Large scenes

« Parallelism
o Ray casting is “embarassingly parallelizable”

* efc.
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Summary

* Intersection acceleration techniques are important
o Bounding volume hierarchies
o Spatial partitions

* General concepts
o Sort objects spatially
o Make trivial rejections quick
o Utilize coherence when possible

Expected time is sub-linear in number of primitives
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Next Time is lllumination!
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