
1

Accelerated
Ray Casting

Thomas Funkhouser

Princeton University

C0S 426, Fall 2000

3D Rendering

• The color of each pixel on the view plane
depends on the radiance emanating from
visible surfaces

View plane

Eye position

Simplest method
is ray casting

Rays
through

view plane

2

Ray Casting

• Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);

}
}
return image;

}

Ray-Scene Intersection

• Find intersection with front-most primitive in group

A

B

C

D

E

F

Intersection FindIntersection(Ray ray, Scene scene)
{

min_t = infinity
min_primitive = NULL
For each primitive in scene {

t = Intersect(ray, primitive);
if (t < min_t) then

min_primitive = primitive
min_t = t

}
}
return Intersection(min_t, min_primitive)

}

3

Ray-Scene Intersection

• Intersections with geometric primitives
� Sphere
� Triangle
� Groups of primitives (scene)

» Acceleration techniques
� Bounding volume hierarchies
� Spatial partitions

» Uniform grids
» Octrees
» BSP trees

Bounding Volumes

• Check for intersection with simple shape first
� If ray doesn’t intersect bounding volume,

then it doesn’t intersect its contents

4

Bounding Volume Hierarchies I

• Build hierarchy of bounding volumes
� Bounding volume of interior node contains all children

1

2 3

A

B

C

D

E

F

3

2

1

A B E FD

C

Bounding Volume Hierarchies

• Use hierarchy to accelerate ray intersections
� Intersect node contents only if hit bounding volume

1

2 3C

A B E FD A

B

C

D

E

F

3

2

1
1

2

A B

C 3

5

Bounding Volume Hierarchies III

FindIntersection(Ray ray, Node node)
{

// Find intersections with child node bounding volumes
...
// Sort intersections front to back
...
// Process intersections (checking for early termination)
min_t = infinity;
for each intersected child i {

if (min_t < bv_t[i]) break;
shape_t = FindIntersection(ray, child);
if (shape_t < min_t) { min_t = shape_t;}

}
return min_t;

}

• Sort hits & detect early termination

Ray-Scene Intersection

• Intersections with geometric primitives
� Sphere
	 Triangle

 Groups of primitives (scene)

» Acceleration techniques
� Bounding volume hierarchies
� Spatial partitions

» Uniform grids
» Octrees
» BSP trees

6

Uniform Grid

• Construct uniform grid over scene

 Index primitives according to overlaps with grid cells

A

B

C

D

E

F

Uniform Grid

• Trace rays through grid cells
� Fast
� Incremental

A

B

C

D

E

FOnly check primitives
in intersected grid cells

7

Uniform Grid

• Potential problem:
� How choose suitable grid resolution?

A

B

C

D

E

F
Too little benefit

if grid is too coarse

Too much cost
if grid is too fine

Ray-Scene Intersection

• Intersections with geometric primitives
� Sphere
� Triangle
� Groups of primitives (scene)

» Acceleration techniques
� Bounding volume hierarchies
� Spatial partitions

» Uniform grids
» Octrees
» BSP trees

8

Octree

• Construct adaptive grid over scene
� Recursively subdivide box-shaped cells into 8 octants
� Index primitives by overlaps with cells

A

B

C

D

E

FGenerally fewer cells

Octree

• Trace rays through neighbor cells
� Fewer cells
� More complex neighbor finding

A

B

C

D

E

FTrade-off fewer cells for
more expensive traversal

9

Ray-Scene Intersection

• Intersections with geometric primitives
� Sphere
� Triangle
� Groups of primitives (scene)

» Acceleration techniques
� Bounding volume hierarchies
� Spatial partitions

» Uniform grids
» Octrees
» BSP trees

Binary Space Partition (BSP) Tree

• Recursively partition space by planes
� Every cell is a convex polyhedron

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

10

Binary Space Partition (BSP) Tree

• Simple recursive algorithms
 Example: point finding

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

P1

3

Binary Space Partition (BSP) Tree

• Trace rays by recursion on tree
! BSP construction enables simple front-to-back traversal

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

P1

2

4

3

11

Binary Space Partition (BSP) Tree

RayTreeIntersect(Ray ray, Node node, double min, double max)
{

if (Node is a leaf)
return intersection of closest primitive in cell, or NULL if none

else
dist = distance of the ray point to split plane of node
near_child = child of node that contains the origin of Ray

 far_child = other child of node
if the interval to look is on near side

return RayTreeIntersect(ray, near_child, min, max)
else if the interval to look is on far side

return RayTreeIntersect(ray, far_child, min, max)
else if the interval to look is on both side

if (RayTreeIntersect(ray, near_child, min, dist)) return …;
 else return RayTreeIntersect(ray, far_child, dist, max)
}

Other Accelerations

• Screen space coherence
" Check last hit first
Beam tracing
$ Pencil tracing
% Cone tracing

• Memory coherence
& Large scenes

• Parallelism
' Ray casting is “embarassingly parallelizable”

• etc.

12

Summary

• Intersection acceleration techniques are important
(Bounding volume hierarchies
) Spatial partitions

• General concepts
* Sort objects spatially
+ Make trivial rejections quick
, Utilize coherence when possible

Expected time is sub-linear in number of primitives

Next Time is Illumination!

Without Illumination With Illumination

