g
<
i

5]
9 %

Accelerated
Ray Casting
Thomas Funkhouser

Princeton University
CO0S 426, Fall 2000

-

g
<
i

B %
BLAC

3D Rendering

» The color of each pixel on the view plane
depends on the radiance emanating from
visible surfaces

Rays
through | i
view plane

Simplest method
is ray casting




-
Ray Casting

g
<
i

%
as]

I

« Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)

Image image = new I mage(width, height);
for (inti=0; i <width; i++) {
for (intj =0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = Findl nter section(ray, scene);
image[i][j] = GetColor(hit);
}
}

return image;

-

%
as]

Ray-Scene Intersection

f
R
i

* Find intersection with front-most primitive in group

Intersection FindIntersection(Ray ray, Scene scene)

{
min_t = infinity
min_primitive = NULL @

For each primitivein scene {
t = Intersect(ray, primitive);
if (t <min_t) then

min_primitive = primitive
min_t=t

}

) ®
return Intersection(min_t, min_primitive)
}




-

Ray-Scene Intersection

g
<
i

3%
9

* Intersections with geometric primitives
o Sphere
o Triangle
o Groups of primitives (scene)

» Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions
» Uniform grids
» Octrees
» BSP trees

-

Bounding Volumes

g
<
i

3%
9

» Check for intersection with simple shape first

o If ray doesn’t intersect bounding volume,
then it doesn’t intersect its contents




e N
Bounding Volume Hierarchies |
 Build hierarchy of bounding volumes

o Bounding volume of interior node contains all children

ERE

@ Ii o

TN i\ (B

®@ © O P

e ©O6 | W= -

OA AO¢ ULy
J

e N
Bounding Volume Hierarchies

» Use hierarchy to accelerate ray intersections
o Intersect node contents only if hit bounding volume




~
Bounding Volume Hierarchies lll

g
<
i

3%
9

» Sort hits & detect early termination

FindIntersection(Ray ray, Node node)
{

/I Find intersections with child node bounding volumes
/I Sort intersections front to back

/I Process intersections (checking for early termination)
min_t = infinity;
for each intersected child i {
if (min_t <bv_t[i]) break;
shape_t = Findintersection(ray, child);
if (shape_t<min_t) { min_t = shape t;}
}

return min_t;

>
Ray-Scene Intersection

g
<
i

3%
g

* Intersections with geometric primitives
o Sphere
o Triangle
o Groups of primitives (scene)

» Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions
» Uniform grids
» Octrees
» BSP trees




-

Uniform Grid

\

2
Lo

» Construct uniform grid over scene
o Index primitives according to overlaps with grid cells

J
- A
Uniform Grid
 Trace rays through grid cells
o Fast

o Incremental

Only check primitives

1=

in intersected grid cells

N\
\

W




-

Uniform Grid

g
<
i

5]
R '\a%

» Potential problem:
o How choose suitable grid resolution?

Ray-Scene Intersection

. . E Y
Too little benefit | iadt N A AN LT A
if grid is too coarse D = 9
~\
Too much cost
if grid is too fine o )(‘
=y
4 B
> S
e J
4 A

g
<
i

5]
@"\a%

* Intersections with geometric primitives
o Sphere
o Triangle
o Groups of primitives (scene)

» Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions
» Uniform grids
» Octrees
» BSP trees




4 )
Octree
» Construct adaptive grid over scene
o Recursively subdivide box-shaped cells into 8 octants
o Index primitives by overlaps with cells
(e ®
)
Generally fewer cells D y =
C
(A)
/E
/B
J
4 )

Octree

5]
R '\a%

g
<
gé

o Fewer cells
o More complex neighbor finding

« Trace rays through neighbor cells

&

Trade-off fewer cells for
more expensive traversal




-

Ray-Scene Intersection

s
<

mﬁ
as]

o

* Intersections with geometric primitives
o Sphere
o Triangle
o Groups of primitives (scene)

» Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions
» Uniform grids
» Octrees
» BSP trees

-

Binary Space Partition (BSP) Tree

* Recursively partition space by planes
o Every cell is a convex polyhedron

@/
/N
OB




(" A

Binary Space Partition (BSP) Tree

« Simple recursive algorithms
o Example: point finding

% \

Binary Space Partition (BSP) Tree

» Trace rays by recursion on tree
o BSP construction enables simple front-to-back traversal




-

Binary Space Partition (BSP) Tree

RayTreelntersect(Ray ray, Node node, double min, double max)

{
if (Nodeis aleaf)

return intersection of closest primitive in cell, or NULL if none

else

dist = distance of the ray point to split plane of node
near_child = child of node that contains the origin of Ray
far_child = other child of node
if the interval to look is on near side

return Ray Treel ntersect(ray, near_child, min, max)
elseif the interval to look ison far side

return Ray Treel ntersect(ray, far_child, min, max)
elseif the interval to look is on both side

if (RayTreelntersect(ray, near_child, min, dist)) return ...;

else return RayTreelntersect(ray, far_child, dist, max)

-

Other Accelerations

» Screen space coherence
o Check last hit first

B

Eﬁ‘%
rg

o Beam tracing RN A R R o

o Pencil tracing ST o e

o Cone tracing o o o o o o
« Memory coherence © o o o o o o oo

o Large scenes

« Parallelism
o Ray casting is “embarassingly parallelizable”

* efc.




-

N
Summary

* Intersection acceleration techniques are important
o Bounding volume hierarchies
o Spatial partitions

* General concepts
o Sort objects spatially
o Make trivial rejections quick
o Utilize coherence when possible

Expected time is sub-linear in number of primitives

-

Next Time is lllumination!

Eﬁ‘%
ok

Without Illumination With [llumination

12



