

Illumination

Thomas Funkhouser Princeton University C0S 426, Fall 2000

Overview

- Direct Illumination
 - Emission at light sources
 - Scattering at surfaces
- Global illumination
 - Shadows
 - Refractions
 - Inter-object reflections

Direct Illumination

Modeling Light Sources

- $I_L(x,y,z,\theta,\phi,\lambda)$...
 - describes the intensity of energy,
 - leaving a light source, ...
 - arriving at location(x,y,z), ...
 - from direction (θ, ϕ) , ...
 - \circ with wavelength λ

Point Light Source

- Models omni-directional point source (e.g., bulb)
 - ∘ intensity (I₀),
 - o position (px, py, pz),
 - ∘ factors (k_c, k_l, k_q) for attenuation with distance (d)

$$I_{L} = \frac{I_{0}}{k_{c} + k_{1}d + k_{q}d^{2}}$$

Directional Light Source

- Models point light source at infinity (e.g., sun)
 - ∘ intensity (I₀),
 - direction (dx,dy,dz)

No attenuation with distance

 $\left|I_{L}=I_{0}\right|$

Ambient Term

• Represents reflection of all indirect illumination

This is a total hack (avoids complexity of global illumination)!

OpenGL Reflectance Model

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - "ambient"

Overview

- Direct Illumination
 - Emission at light sources
 - Scattering at surfaces
- Global illumination
 - Shadows
 - Transmissions
 - Inter-object reflections

Global Illumination

Global Illumination

Greg Larson

Shadows

- Shadow terms tell which light sources are blocked
 - Cast ray towards each light source L_i
 - \circ S_i = 0 if ray is blocked, S_i = 1 otherwise

Thige I iguic 0.4

Ray Casting

- Trace primary rays from camera
 - Direct illumination from unblocked lights only

$$I = I_E + K_A I_A + \sum_L (K_D(N \bullet L) + K_S(V \bullet R)^n) S_L I_L$$

Recursive Ray Tracing

GetColor calls RayTrace recursively

```
Image RayTrace(Camera camera, Scene scene, int width, int height)
{
    Image image = new Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(camera, i, j);
            Intersection hit = FindIntersection(ray, scene);
            image[i][j] = GetColor(scene, ray, hit);
        }
    }
    return image;
}</pre>
```

Summary

- Ray casting (direct Illumination)
 - Usually use simple analytic approximations for light source emission and surface reflectance
- Recursive ray tracing (global illumination)
 - Incorporate shadows, mirror reflections, and pure refractions

All of this is an approximation so that it is practical to compute

More on global illumination later!

Illumination Terminology

- Radiant power [flux] (Φ)
 - Rate at which light energy is transmitted (in Watts).
- Radiant Intensity (I)
 - Power radiated onto a unit solid angle in direction (in Watts/sr)
 » e.g.: energy distribution of a light source (inverse square law)
- Radiance (L)
 - Radiant intensity per unit projected surface area (in Watts/m²sr)
 - » e.g.: light carried by a single ray (no inverse square law)
- Irradiance (E)
 - $\circ~$ Incident flux density on a locally planar area (in Watts/m $^2)$
 - » e.g.: light hitting a surface along a
- Radiosity (B)
 - Exitant flux density from a locally planar area (in Watts/ m²)